
Online-Learning and Planning in High Dimensions
with Finite Element Goal Babbling

Pontus Loviken
AI Lab, SoftBank Robotics Europe

Plymouth University, UK
Email: ploviken@softbankrobotics.com

Nikolas Hemion
AI Lab, SoftBank Robotics Europe

Email: nhemion@softbankrobotics.com

Abstract—Goal babbling (GB) has proved to be a powerful
tool in online learning of inverse kinematic models of high-
dimensional redundant robots that are acting in low dimensional
sensor-spaces. To only look for inverse models is however not
sufficient. An inverse model will only tell the robot what posture
it should have in order to reach a goal, but not how to reach
that posture. As many environments restrict what motions are
possible this becomes a limitation.

This paper introduces a new method, Finite Element Goal
Babbling (FEGB), that presents a natural extension to GB. By
partitioning the sensor-space into a disjoint set of finite elements
where every element is seen as an independent GB problem, a
planning module can be added by observing transitions between
the different elements.

The method is evaluated on a high dimensional planar arm,
acting in an environment that restricts its movements. The goal
is to learn to control the position of the end-effector so that
it can reach any position in the environment. The results show
that FEGB is able to learn such control rapidly while naturally
dealing with stationary obstacles and workspace limits that would
prohibit the applicability of GB.

I. INTRODUCTION

Many behaviors can be naturally described in terms of
movement of a given body part in a well-defined space:
reaching means moving the hand towards the location of an
object, standing up can be described as moving the head
upwards, locomotion can be said to be the displacement of
the body’s center of mass in the direction of travel. In the
robotics literature, these spaces are referred to as operational
or task space, and are distinct from the configuration space or
motor space, which the robot has control over.

Within developmental robotics [1] a natural question is how
to allow a robot to gain control over a task space, given
its control over a motor space. One of the most common
approaches in the literature is to let the robot explore what
it can do through “motor babbling”, that is, moving some or
all of its motors in a random way and observing what effects
this has on its sensors. A major problem with this approach is
that the motor spaces of all but the most simple robots are very
high-dimensional. Consequently, it is theoretically impossible
for the robot to exhaustively explore the entire motor space
within a reasonable amount of time (“within a lifetime”), due
to the so-called curse of dimensionality.

An alternative strategy, which circumvents this difficulty, is
to let robots explore the task space instead of the motor space.

Fig. 1. By viewing different regions of the task space (here spanned by the
position of the end effector) as discrete states of a Markov Decision Process
(MDP), FEGB is able to plan trajectories around obstacles that would stop
traditional goal babbling (GB) approaches where only an inverse model is
learned. This figure shows the same attempted transition for four different
settings after 10000 iterations of training. Notable is that GB can not reach
the goal ×, as it is unable to plan a motion around the wall.

As a result, the robot efficiently learns one way (as opposed
to learning all possible ways) of navigating the task space.
One proposed method for achieving this is goal babbling [2],
among others [3], [4], [5]. Goal babbling exploits the fact that
many task spaces are naturally low-dimensional (for example,
any translation of a body part can be described by a three-
dimensional trajectory). This allows even robots with a high
number of degrees of freedom to explore the entire task space
within a reasonably short amount of time. A limitation of most
previous implementations of goal babbling is however that it
has mainly focused on settings where there exists a forward
model that maps motor actions to specific outcomes in the task
space. This applies to situations where the starting condition
for every action is always the same, or where the probability
for the agent to reach a certain motor state is independent of
its current motor state or position in the task space. In reality
such assumptions are clearly not always applicable. One such

example can be seen in Figure 1 to the upper left. It is not
sufficient for the agent to know what motor state to reach if
it can not reach it, as in this case with a wall in the way.

This paper introduces Finite Element Goal Babbling
(FEGB), an extension to the goal babbling framework. FEGB
shows that by making some restrictions to the goal babbling
framework, it is possible to combine it with a higher level
planner that abstracts different regions of the task space as
discrete states of a Markov Decision Process (MDP). By
learning transitional probabilities between these different
states in the MDP, it is then possible for the planner to identify
sequences of regions an agent has to move through in order
to reach a desired goal. The results shows that the addition
of such a planning capability allows the agent to learn online
how to efficiently reach goals even in environments where
movements have to be planned, and without losing the ability
of goal babbling to find such motor policies in a training time
that is more or less untangled from the dimensionality of the
motor space.
Code: https://github.com/loviken/fegb/tree/icdl-epirob-2017/
Videos: http://pontusloviken.com/icdl-epirob-2017/

II. RELATED WORK

Goal babbling and related ideas have been shown to ef-
fectively permit learning across a number of domains, for
example reaching [2], tool use [6], and speech production [7],
[8]. The motor space varies in these cases from action spaces
spanned by joint angle configurations (as in [2] or [9]) where a
motor action is represented by a goal joint configuration, also
referred to as a goal posture, to which the agent tries to move,
to motor actions that represent extended motions in time such
as Dynamic Movement Primitives (as in [6]) or Central Pattern
Generators (as in parts of [10]).

The latter case is generally restricted to scenarios where the
system returns to an initial state after each action. In the former
case there are generally two different approaches depending
on whether the goal is to just explore a task space, or to also
allow an agent efficient control over the task space. If the
goal is only exploration it is usually sufficient to perturb a
previously seen posture that was close to a given goal [9]. This
efficiently explores the task space but gives no information of
what posture can be reached from any other posture, and might
try to use vastly different postures for goals that are very close
to each other. In cases where the motion between different
postures has to be taken into account another approach can
be employed. This approach focuses on actively finding one
consistent continuous inverse function that allows the agent
to move in a straight motion between any two points in the
task space. Such mappings are usually found through the
use of a “home posture”, a relaxed posture that the agent
frequently returns to, and a weighting scheme that enforces
consistency in the inverse model. Examples of such approaches
are found in [2], [10] and [11]. Beside limiting the inverse
model to postures similar to the home posture, this approach
also requires task spaces where such consistent models are
possible, which is not the case if there exist discontinuities in

Fig. 2. Left. A planar robot arm that is fixed by the base with an obstacle
within its workspace can not have a continuous mapping with one posture to
every end effector position. Since the robot can reach past the obstacle from
both sides there has to exist a discontinuity behind the obstacle where the agent
decides whether to pass the obstacle on the right or the left side. Right. It is
often possible to split a discontinuous workspace into smaller regions/states
where the mapping within every region can be continuous, while dispatching
discontinuities to the boundaries in-between. In this case the discontinuity is
placed between X(1) and X(2), so that a transition between the regions must
go through X(3), X(4).

the mapping from task- to motor-space. This is the case for
example as soon as an object is introduced within its reachable
space (see figure 2) or even if the agent is able to reach around
its base.

For those interested in exploring traditional goal babbling
frameworks is Explauto One [12] an easy to use platform.

Finite Element Goal Babbling is different from goal bab-
bling in that it integrates the low-level control of the goal
babbling framework with higher level planning. This is a
trending topic in Machine Learning (see e.g. the best paper
at NIPS2016, [13]), but has to our knowledge not been done
with goal babbling before.

III. FINITE ELEMENT GOAL BABBLING

Finite Element Goal Babbling (FEGB) studies in this work,
as in the goal babbling framework of [2], the relation between
joint angles q ∈ Q ⊂ Rm and end-effector poses x ∈ X ⊂ Rn

of a planar arm. The effector pose is in this case uniquely
defined by a forward kinetic function f(q) = x, where the aim
of traditional goal babbling is in general to find one inverse
model g(x) = q such that f(g(x)) = x. This is however only
useful if the arm is actually able to reach the posture q = g(x),
and in many domains (for example when there are obstacles
in the task space) this ability depends strongly on the initial
state (x0, q0) of the arm. To efficiently reach targets x in more
complex environments, it is necessary to plan trajectories.

FEGB does this by segmenting the task space into a disjoint
set of smaller regions {X(i)}Ni=1, where each such region is
treated as a discrete state si = X(i) in a Markov Decision
Process (MDP). By learning the probability P (s, s′) that the
arm can move from a region s to a region s′ while using g(x),
it is then in turn possible for a higher level Planner to plan
a sequence of regions to pass through in order to reach any
other region with high confidence. Each such transition s→ s′

is then physically performed at a lower level by the inverse
model (much like an option [14]), by choosing a uniformly
distributed point x′ within the targeted region s′ and transform

it into a goal posture q′ = g(x′). Figure 3 gives an overview
of the process.

A. Constraints

The abstraction of regions into states of an MDP is useful
but puts some constraints on the inverse model, which can be
summarized into problems of consistency, division and posture
search.

1) The Consistency problem: To be able to plan in the
MDP it is to begin with important that there are no hidden
variables, see figure 2: Imagine that the inverse model would
suggest postures where the arm reaches into s1 from the
right side of the obstacle in some parts of X(1), and from
the left side in other parts. It would then be impossible to
plan effectively as the planner would need to know if the
agent was in s1 by reaching from the right or left side, in
order to know the probability to transition to neighboring
states. A solution to this problem is to demand that the
inverse model has to be consistent within each region, meaning
that any two postures q1, q2, s. t. g(q1), g(q2) ∈ X(s) can
be reached in a direct movement and without leaving s.
Going back to figure 2, that means that the inverse model
would need to decide on one way to reach region s1, either
only from the left side, or only from the right side. FEGB
accomplish this consistency by letting every region s have its
independent inverse model gs(x) based on the observations
(x, q) that have previously been made in the state, and that
are consistent with previously accepted observations in the
state. First observations are always considered consistent. See
section III-B for details on how this consistency is determined.

2) The Division problem: A consequence of requiring con-
sistency in each region is that it has to be possible for the
inverse model to be consistent within that region. In general
this is true if the region is not too big and without obstacles
in it. Obstacles thus has to be placed on the edges between
different regions. In this work this division is handcrafted.

3) The Posture Search problem: As the dimensionality of
the motor space is so much higher than the dimensionality of
the task space there is in general an infinite set of possible
postures to each region. For efficient control it is however
important to notice that not all possible postures within a
region are equally capable of moving into neighboring ones.
The goal is not only to capture the probabilities of moving
between states in the MDP, but also to find the inverse
models that maximize these probabilities. To do this it is
necessary to allow the inverse models to evolve over time,
towards more “useful” postures. Since the inverse models
are built on previous observations in the region this posture
exploration can be held back by old observations that are
increasingly less representative of the current inverse model.
For this reason it can be efficient to weigh samples after how
recent they are. This can be done in many ways, but in this
work this is achieved with a memory heuristic. This works
so that every new observation is given a value 1 in memory
space. Every time the observation is then unsed for making
an inverse estimate this value is decayed by a small amount

Fig. 3. Left: Overview of the proposed system. The inverse models receive
from the environment the robot’s end-effector position x in task space and
its posture q in motor space. The position x is then discretized into the state
s depending on the region of x, which is communicated to the planner. The
planner then picks a new goal state s′ according to equation 8, which is then
sent to the inverse models which then picks a random position x′ within the
region s′. This position x′ is then transformed into a goal posture q′ using the
inverse model of region s′. The arm then tries to do a direct motion into the
posture q′. Right: An example where the agent starts in state s and attempts
a transition to state s′. To get to state s′ it attempts posture q′, but when
trying to get to q′ it hits the wall and ends up in task-motor state (x, q), still
in state s.

(∼ 0.001). This allows the inverse models to identify and give
priority to observations that are more recently made, and if
the observation was useful, it would have resulted in new
observations with similar postures. Observations that do not
result in good inverse estimates on the other hand, will fade
into oblivion and give room for more useful postures.

Finally are there some cases where an inverse model gs(x)
is found, but where it for some reason becomes unusable. This
is rare, but can happen if neighboring regions’ inverse models
make it impossible to reach any posture gs(x). Such situations
are here dealt with by forgetting that inverse model altogether
to allow a more compatible inverse model to be found.

B. Inverse Models

Each inverse model gs(x) is here based on observations
(xi, qi) that have previously been made in the region of
s. These observations are collected into a dataset Ds =
{xi, qi}ds

i=1, where new observations are only added if they
are considered consistent with previously added observations
so that the whole dataset is consistent.

1) Generating inverse estimates: Consistency implies that
any interpolation q̂ of two motor states q1, q2 for which
f(q1), f(q2) ∈ s is also in s. This allows inverse estimates
to be done using for example Linear Regression (LR) [15]. A
linear mapping might however not be a good fit at the larger
scales of a region, and for that reason are inverse estimates
created from subsets D̂s,x rather than the whole set Ds. The
smaller datasets D̂s,x are formed out of the 100 samples of Ds

that are closest to a target x in combined task- and memory-
space, where memory space is seen as just another dimension
of task space and where the “memory position” of the target
x is set to 1. If the full dataset has less than 100 samples, then
D̂s,x = Ds, unless Ds is empty. In that case is an extrapolation
made from the agents current state s0 by using D̂s,x = D̂s0,x.

This dataset is guaranteed to not be empty, as the arms current
state (x0, q0) would then be an observation in s0. Using D̂s,x

it is now possible to estimate a goal posture

g̃s,x = LR(D̂s,x), (1)

where samples are weighted by their distance to x.
There are now two situations. If the objective is to exploit

the inverse model to reach a specific goal, then

g(s)(x) = g̃s,x (2)

as it would maximize the chance of reaching x. If the objective
on the other hand is to train the inverse model, then some
Gaussian noise will be added to the estimate to increase the
exploration of the motor space. This gives an estimate

gs(x) = g̃s,x + rh(P (s0, s), ds) (3)

where r ∼ U(0, 1) is a uniformly random scalar, that allows
samples to sometimes be close to the best estimate and
sometimes more exploratory, and h(P (s0, s), ds) is a Gaussian
noise that is proportional to the approximated probability
P (s0, s) to reach the state, and inversely proportional to the
number of consistent observations ds made in that state. This
allows uncertain transitions to explore the posture space to a
greater extent, but also allows the inverse models to converge
over time. To add this kind of noise works since only noise
that leads to new observations that are consistent with previous
data will be added to the datasets, which creates a “survival
bias” towards postures that are useful.

2) Determining consistency: In theory it would be nec-
essary to move between all previously seen postures of a
dataset to determine if a new observation is consistent with
(i. e. inside the convex hull of) these observations. Training
data is in this work observations made along the trajectories
in task- and motor-space that the agent creates every time it
reaches for a goal posture, and these trajectories each consists
of 100 data points, unless the movement was interrupted. It
would be unfeasible to compare each of these data points to all
previous data points in their respective regions. For this paper
some assumptions are therefore made to determine consistency
more easily. Theoretically there are some situations where
these assumptions would accept non-consistent samples, but
in practice it seemed to work well enough. The assumptions
are:

1) A data point found in a new state is always consistent.
2) It is sufficient that a sample is consistent with one other

sample in a dataset, in order to be considered consistent.
3) A posture q ∈ g(X(s)) is consistent with Ds, as it was

created as a linear combination of the postures already
in that set.

The implication of these rules is (aside from always accepting
the first sample in a state) that all directly succeeding samples
of a trajectory within a state can be accepted if at least one
of the samples is consistent with the dataset of the state. This
follows by the fact that it was clearly possible to interpolate
between them and the consistent data point, as the whole

trajectory is an interpolation between two postures. Practically
this applies every time an agent tries to reach a state s and
also ends up there in one uninterrupted trajectory, since the
last posture of that trajectory would be the goal posture which
was generated using the dataset of that state, according to
assumption 3).

C. The Planner

The planner has two main purposes. To create a model of the
MDP, and to use this model to reach specific goal states. This
translates into approximating P (s, s′), which is the probability
that the agent can move successfully from s to s′ if asked to
(explore), and to plan sequences of states to move through in
order to reach a goal state s∗ (exploitation).

1) Special properties: The MDP has one important hidden
variable to keep track of, which is if the agent is in a consistent
posture or not. Going back to figure 2, P (s1, s2) is here
representing the probability that the agent can move from s1 to
s2 if asked to, if its initial posture is consistent with the inverse
model of s1. Assume for example that the arm would end up
in s1 by mistake from the right side of the obstacle, while Ds1

only include left side solutions. The arm would in this case be
in an inconsistent configuration, and all previous experiences
of transitions from s1 would be unreliable. This work only
considers the arm to be in consistent postures when it ended
up in a state that it also tried to reach (see section III-B),
which in turn explains why P (s, s′) is used and not the more
commonly used Pa(s, s

′), where the probability of ending up
in s′ when issuing a command a is considered. If the agent
would reach for a state in FEGB and not end up there, it is
per definition in an inconsistent motor configuration, meaning
that any probability estimate starting from that state can not
be relied upon. Whenever the agent gets into a non-consistent
configuration its main goal is to get back into a consistent one.
In general it will then act as it usually would, with a notable
exception for the case if it fails to leave its initial region. In
that case will it chose the the current state as its next target
state. This leads the agent to chose another point x within that
state (uniformly) which in turn allows the agent to reposition
itself within the region. This is useful since probabilities to
leave a state is based on the agent having a random position
within the region, and by repositioning itself it makes sure that
the probability to leave the state is not biased towards specific
positions of that region.

2) Exploration: When estimating the probability of a suc-
cessful transition: P (s, s′), it is important to remember that
this probability is based on inverse models that are themselves
improving over time and that the rate of this improvement
is influenced by how many times the transition has been
attempted. This means that if the Planner is selecting a goal
state s′ in order to estimate P (s, s′), it also selects the inverse
model gs′(x) to be trained. Because of this the planner has
two main challenges when building a model of the MDP:

1) To estimate current transitional probabilities.
2) To decide what inverse models to train.

To this end an intrinsic motivation heuristic, similar to [3],
[16] and [17], is introduced. A reward R(s, s′) (which is given
every time the the agent moves successfully from s to s′) is
initially set to R0, and then updated according to

R(s, s′)← βR(s, s′) (4)

every time the transition succeeds. β ∈ [0, 1] is as decay-
factor of the reward. To account for the fact that transitional
probabilities change over time P (s, s′) is estimated using an
exponential moving average,

P (s, s′)← αP (s, s′) + (1− α)I(s, s′) (5)

where I(s, s′) equals 1 if the transition is successful and
0 otherwise, and α ∈ [0, 1] is the decay-factor of previous
estimates. Initially all probabilities are optimistically set to
P (s, s′) = 1.

Using P (s, s′) and R(s, s′) it is possible to compute an
estimated return Q(s, s′) for attempting a transition s→ s′,

Q(s, s′) = P (s, s′)[R(s, s′) + γV (s′)] (6)

where γ ∈ [0, 1] is the future reward discount and

V (s) = max
s′
{Q(s, s′)} (7)

Where V and Q are estimated using value iteration [15]. Given
Q the planner will then choose goal states greedily, so that:

s′ = argmax
s′′
{Q(s, s′′)} (8)

where s′′ is limited in the Moore neighborhood of s (including
s).

The overall effect of equation (4) and (5) can be seen when
considering their effect on the estimated return (6). A transition
that is too easy will stop being interesting since R → 0
(unless the transition opens up for delayed future reward), and
a transition that is too hard will stop being interesting since
P → 0. This makes the agent focus on the transitions in-
between, where it has some probability of success but where
only a few successes have previously been seen. These are also
transitions where the inverse models have good opportunities
for improvement since transitions are clearly possible, but not
yet performed in a reliable way.

The estimated reward of one attempted transition s → s′

is P (s, s′)R(s, s′), and this reward will always decrease if
the transition fails, as P decreases while R stays fixed. If
the transition is a success on the other hand, then P will
increase and R will decrease. In particular if P (s, s′) = P
and R(s, s′) = R before a success, and R′, P ′ after, then

R′ = βR (9)

and
P ′ = αP + (1− α) (10)

Combining (9) and (10) it is possible to show that the
estimated one step reward P (s, s′)R(s, s′) stays fixed for an
initial probability P = P ∗ where

P ∗ =
(1− α)β
1− αβ

(11)

If P < P ∗ before the transition, P (s, s′)R(s, s′) will increase
in case of success. This creates a mechanism that fundamen-
tally controls the balance between the two objectives of the
planner when building a model. A low P ∗ results in the
planner pushing the agent to attempt more unlikely transitions,
since all probabilities P > P ∗ will decrease in estimated
return after a success, while a high P ∗ encourages the agent
to explore all transitions more evenly, creating a better model,
but without pushing the inverse models as hard to improve.

For this work P ∗ = 0.3 and α = 0.8, giving β ≈ 0.68. The
future reward discount was set to γ = 0.95.

3) Exploitation: Once a model is built it can be used to plan
trajectories to any state/region s of the task space. Assume that
a goal position x∗ ∈ s∗ is given (e.g. by an external user). It
is then up to the planner to find a sequence of transitions that
is both short and likely to get the agent to s∗. This is done by
redefining the rewards R(s, s′) so that

R(s, s′) =

{
1 , s′ = s∗

0 , otherwise
(12)

This reward inserted in equation (6) of Q will lead the planner
to consistently choose the goal states s′ with the highest
probability of reaching s∗ while penalizing longer paths due
to future reward discount γ.

IV. EXPERIMENTS

A. Setup

The environment illustrated in Figure 1 is used to evaluate
the performance of FEGB. This setup includes an arm of
length 1 and width 0.01 units, in an enclosed square room with
sides of 1 unit and with walls of length 0.2 reaching into the
room. The base of the arm is fixed to the middle of the room
and has uniformly spaced joints where the number of joints
depends on its degrees of freedom. Every joint can be given
any angle [−π, π], and the arm will move towards any given
motor-goal in 100 steps in a linear fashion in motor space.
This movement will be stopped at any point if the subsequent
position would break the physical laws of the environment,
which consists of:
• The arm cannot pass trough walls.
• The arm cannot pass through itself.
• The arm can not move infinitely fast. This is in practice

accomplished by restricting the speed of any joint to be
lower than some threshold, which limits the magnitude
of the arm’s movement at each iteration.

This setup provides a complex problem where a high dimen-
sional motor space makes most traditional methods unfeasible
for rapid online learning, while environmental restrictions
break vital assumptions for using goal babbling.

Two measures are used in evaluating the method:
• Inverse model error
• Reaching error

The inverse model error εinv measures the distance

εinv = ||x∗ − f(g(x∗))||2 (13)

Fig. 4. The inverse error over time for different resolutions of subtask-spaces
and 100 degrees of freedom. The background shows the density of samples,
where lighter colors signify higher concentration. Each column of pixels
represents the density of 20 × 200 evaluations (20 independent runs, each
evaluated 200 times). The lines show the geometrical mean of the distributions
to highlight the average dimension of the error.

between a randomly sampled task goal x∗ and the end effector
position of the agent given its inverse estimate q∗ = g(x∗),
ignoring whether q∗ can be physically reached or not. This is
computed off-line by simply applying the forward kinematics
f(q∗). If x∗ is in a state for which there is no inverse model,
it will be re-sampled.

The Reaching error εreach measures how close the agent
can get to a random goal x∗ when starting in a motor state
q0 = g(x0), where x0 is another random point in the task
space. The agent is then allowed multiple steps in the MDP
for reaching s∗ for which x∗ ∈ s∗, leading to a trajectory
{xt}Tt in the task space. Using this trajectory the reaching
error is defined as:

εreach = min
t
||xg − xt||2 (14)

This measure is used so that a measurement will be given even
when the arm fails to reach the goal state and therefore never
stops moving.

FEGB is evaluated for:
• Different resolutions when partitioning X , where a reso-

lution of 1× 1 is equivalent to goal babbling, as it does
not allow for planning.

• Different numbers of degrees of freedom of the arm.
• Effect of extended training-time.

The method is here only compared to one version of goal
babbling. The important thing to remember is that FEGB is
different from goal babbling in that it adds a planing layer.
The emphasis is therefore not on how fast and well an inverse
model can be learned by a goal babbling architecture, but
on showing the limitation of only building an inverse model
without allowing for planning.

Fig. 5. The reaching error over time, for different resolutions of subtask-
spaces and 100 degrees of freedom. Each column of pixels represents the
density of 20 × 100 evaluations (20 independent runs, each evaluated 100
times). The lines show the geometrical mean of the distributions.

Every setting is evaluated for 20 independent runs and for
10000 iterations each (except in the extended training-time
case). The inverse error is computed every 50th iteration by
collecting 200 samples, while the reaching error is computed
every 250th iteration by collecting 100 independent samples.
In the extended training-time test only one run is made. It runs
for 50000 iterations and 200 inverse error values are collected
every 250th iteration and 100 reaching errors are collected
every 1000th iteration.

B. Results

Figures 4 and 5 show the effect of different resolutions
when partitioning the task-space. Figure 6 shows the effect
of different degrees of freedom, Figure 7 the effect of ex-
tended training-time and Figure 1 compares some trajectories
developed in the different settings. Most significant in Figure
1 is that the arm is unable to reach a goal on the other side of
a wall without the ability to plan, as it tries to go straight for
the goal posture even though the wall stops it from actually
reaching it.

1) Resolution - GB vs FEGB: It is clear that the added
planning capability of FEGB substantially increases the per-
formance in terms of both the errors, considering Figures 4 and
5. Especially in terms of the reaching error does the advantages
of FEGB over GB become clear, which is expected since GB
is not designed for scenarios where planning is necessary. This
can be seen in particular by noting that the inverse errors and
the reaching error are roughly the same for FEGB, while GB
has a better inverse error than reaching error, meaning that it
is unable to reach its goal postures. Generally it seems like
the higher resolution the better but this trend must eventually
break since a higher resolution means more inverse models to
train and a more complex MDP model to learn. These factors

Fig. 6. The reaching error over time, for different degrees of freedoms of
the arm and resolution 6×6. Each column of pixels represents the density of
20 × 100 evaluations (20 independent runs, each evaluated 100 times). The
lines show the geometrical mean of the distributions.

should make the training time longer but it seems like 10×10
is not big enough for this effect to become significant. What is
interesting is that 7×7 is managing pretty well considering that
the odd number will place some walls straight through some
of the states, making it impossible to find consistent datasets
for the whole region. By manually examining the trajectories
made in this case we hypothesize that the planner learns to
avoid these states by primarily planing its trajectories through
other more reliable, states.

2) Degrees of freedoms: From the results of Figure 6 it
appears that the degrees of freedom has little or no effect on
the effectiveness of the method. This is in line with previous
results from goal babbling [2] and shows that this property
transfers to FEGB.

3) Extended training-time: Figure 7 shows that the method
is stable and that the inverse error and the reaching error
are virtually identical after approximately 10000 iterations,
meaning that the agent can basically move between any two
positions in the task space at that point.

V. DISCUSSION

Finite Element Goal Babbling provides a framework for
rapid online learning of high dimensional systems in lower
dimensional task-space where the reachability of a position in
task- or motor-space is dependent on the initial condition of
the system. It is thus extending goal babbling to a wider set of
problems while clearly keeping its indifference to the motor-
space dimensionality and also preserves a rapid learning rate.
These properties make it an interesting candidate for on-line
learning in physical robots, as it is applicable to high degrees
of freedoms while avoiding limitations and problems of other
state-of-the-art methods, such as the long training time and
large databases needed for most Deep Reinforcement Learning

Fig. 7. The result of a single longer run with resolution 10 × 10 and 100
degrees of freedom. Each column of pixels represents the density of 200
samples for the inverse model error, and 100 samples for the reaching error.
The lines show the geometrical mean of the distributions.

(DRL) solutions [18], [19], [20]. Additionally it also provides
a user control over the trained robot since goal states can be
given from outside. It however lacks the ability to process large
sensor spaces like in DRL, and it could be very interesting to
see if there are possible fusions of the two approaches. One
promising approach within the field of goal babbling of how to
work with larger task spaces can be found in [6], where a goal
babbling architecture is used to solve multiple task-spaces in
parallel.

Another important topic to study is methods for the agent
to partition the task space autonomously (as is done in [10]
e.g.), as the structure of the environment is often not known
it advance. A more exhaustive investigation into the intrinsic
motivation of the agent could also be beneficial since there
exists many different promising implementations, even though
such a comparison was outside the scope of this work.

Finally it would be interesting to study FEGB in environ-
ments that shape the motions of the agent to a wider extent.
The current environment is very unforgiving in the sense that a
motion is either entirely allowed, or entirely refused. A more
“shaping” environment could maybe help bootstrapping the
search for efficient motions and postures of the agent, an effect
shown in [21] among other works.

ACKNOWLEDGMENTS

This project has received funding from the European Unions
Horizon 2020 research and innovation programme under
the Marie Sklodowska-Curie grant agreement No 674868
(APRIL).

REFERENCES

[1] A. Cangelosi and M. Schlesinger, Developmental robotics: From babies
to robots. MIT Press, 2015.

[2] M. Rolf, J. J. Steil, and M. Gienger, “Goal babbling permits direct
learning of inverse kinematics,” IEEE Transactions on Autonomous
Mental Development, vol. 2, no. 3, pp. 216–229, 2010.

[3] P.-Y. Oudeyer, F. Kaplan, and V. V. Hafner, “Intrinsic Motivation
Systems for Autonomous Mental Development,” IEEE Transactions
on Evolutionary Computation, vol. 11, no. 2, pp. 265–286,
Apr. 2007. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=4141061

[4] J. Schmidhuber, “Formal theory of creativity, fun, and intrinsic motiva-
tion (19902010),” Autonomous Mental Development, IEEE Transactions
on, vol. 2, no. 3, pp. 230–247, 2010.

[5] K. Narioka, R. F. Reinhart, and J. J. Steil, “Effect of exploratory
perturbation on the formation of kinematic synergies in Goal Babbling,”
in 2015 Joint IEEE International Conference on Development and
Learning and Epigenetic Robotics (ICDL-EpiRob), Aug. 2015, pp. 86–
91.

[6] S. Forestier and P.-Y. Oudeyer, “Modular active curiosity-driven dis-
covery of tool use,” in Intelligent Robots and Systems (IROS), 2016
IEEE/RSJ International Conference on. IEEE, 2016, pp. 3965–3972.

[7] C. Moulin-Frier, S. M. Nguyen, and P.-Y. Oudeyer, “Self-organization
of early vocal development in infants and machines: the role of intrinsic
motivation,” Frontiers in Psychology, vol. 4, 2014. [Online]. Available:
http://journal.frontiersin.org/article/10.3389/fpsyg.2013.01006/abstract

[8] A. Philippsen, F. Reinhart, and B. Wrede, “Goal babbling of acoustic-
articulatory models with adaptive exploration noise,” 2016.

[9] F. Benureau, “Self-Exploration of Sensorimotor Spaces in Robots,”
phdthesis, Universit de Bordeaux, May 2015. [Online]. Available:
https://hal.archives-ouvertes.fr/tel-01251324/document

[10] A. Baranes and P.-Y. Oudeyer, “Active learning of inverse models
with intrinsically motivated goal exploration in robots,” Robotics
and Autonomous Systems, vol. 61, no. 1, pp. 49–73, Jan.
2013. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/
S0921889012000644

[11] M. Rolf and J. J. Steil, “Efficient Exploratory Learning of Inverse
Kinematics on a Bionic Elephant Trunk,” IEEE Transactions on Neural

Networks and Learning Systems, vol. 25, no. 6, pp. 1147–1160, Jun.
2014.

[12] C. Moulin-Frier, P. Rouanet, and P.-Y. Oudeyer, “Explauto: an
open-source python library to study autonomous exploration in
developmental robotics.” IEEE, pp. 171–172. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6982976

[13] A. Tamar, Y. Wu, G. Thomas, S. Levine, and P. Abbeel, “Value
iteration networks,” in Advances in Neural Information Processing
Systems, pp. 2154–2162. [Online]. Available: http://papers.nips.cc/
paper/6046-value-iteration-networks

[14] B. Hengst, “Hierarchical Approaches,” in Reinforcement Learning,
M. Wiering and M. van Otterlo, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, vol. 12, pp. 293–323. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-27645-3\ 9

[15] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,
1st ed. Cambridge, MA, USA: MIT Press, 1998.

[16] M. Frank, J. Leitner, M. Stollenga, A. Frster, and J. Schmidhuber,
“Curiosity driven reinforcement learning for motion planning on hu-
manoids,” Frontiers in Neurorobotics, vol. 7, 2014. [Online]. Available:
http://journal.frontiersin.org/article/10.3389/fnbot.2013.00025/abstract

[17] C. Salge, C. Glackin, and D. Polani, “Empowerment – an Introduction,”
arXiv:1310.1863 [nlin], Oct. 2013, arXiv: 1310.1863. [Online].
Available: http://arxiv.org/abs/1310.1863

[18] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel,
“High-Dimensional Continuous Control Using Generalized Advantage
Estimation,” arXiv:1506.02438 [cs], Jun. 2015, arXiv: 1506.02438.
[Online]. Available: http://arxiv.org/abs/1506.02438

[19] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-End Training of
Deep Visuomotor Policies,” arXiv:1504.00702 [cs], Apr. 2015, arXiv:
1504.00702. [Online]. Available: http://arxiv.org/abs/1504.00702

[20] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015. [Online]. Available:
http://arxiv.org/abs/1509.02971

[21] R. Der and G. Martius, “Novel plasticity rule can explain the
development of sensorimotor intelligence,” Proceedings of the National
Academy of Sciences, vol. 112, no. 45, pp. E6224–E6232, Nov.
2015. [Online]. Available: http://www.pnas.org/lookup/doi/10.1073/
pnas.1508400112

