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Abstract—Artificial object perception usually relies on a priori
defined models and feature extraction algorithms. We study how
the concept of object can be grounded in the sensorimotor
experience of a naive agent. Without any knowledge about
itself or the world it is immersed in, the agent explores its
sensorimotor space and identifies objects as consistent networks
of sensorimotor transitions, independent from their context. A
fundamental drive for prediction is assumed to explain the
emergence of such networks from a developmental standpoint.
An algorithm is proposed and tested to illustrate the approach.

I. INTRODUCTION

The framework of developmental robotics addresses the
difficult problem of how an agent can autonomously learn to
interact with its environment and progressively acquire more
and more complex skills. In such an attempt, the question of
how the agent actually perceives its environment is fundamen-
tal but rarely addressed in the literature. Either the problem is
bypassed, by providing the agent with a priori models and
feature extraction algorithms (e.g. [1], [2]), or avoided, by
taking a behaviorist standpoint to study the system ([3], [4]).

The sensorimotor approach of perception proposes a re-
definition of the nature of perception that naturally accounts
for its grounding in sensorimotor experience and its acquisition
by an autonomous agent ([5], [6]). Although the theory is
promising, its application is demanding. It requires an over-
haul of what is commonly accepted in artificial perception
and an intertwined analysis of phenomena that are usually
considered independently (motor outputs and sensory inputs,
modalities...).

The sensorimotor re-formalization of different perceptive
notions like sound localization [7], spatial perception [8], rigid
displacements [9], color perception [10] or body schema [11]
have already been proposed. Notably enough, those works fo-
cus on perceptive properties that are environment-independent:
they relate to space, in which the environment is immersed, or
to properties of the agent’s structure and perceptive apparatus.
In this paper, we propose to address the grounding of the
concept of object in an agent’s sensorimotor experience. We
believe it forms with the concept of space, previously studied,
a large part of an agent’s perceptual experience: most of what
we perceive are objects in space. Contrarily to previous works,
this paper directly focuses on characterizing properties of the
environment. Instead of being limited to an abstract formal-
ization of the concept, an algorithm will also be proposed

to illustrate how it can pragmatically be applied in a system,
opening the door to practical problems like object recognition.
Moreover, in line with the developmental approach, we’ll
explain how discovering objects in the environment can be
the byproduct of satisfying a more fundamental drive for
prediction, as proposed in ([12], [13]).

This work also relates to literature beyond the direct
application of the sensorimotor approach of perception. A
parallel can for instance be drawn with the scan-path theory
proposed to account for visual perception [14]. In the same
vein, previous works also attempted to take inspiration from
saccadic human vision and to characterize objects based on
spatially distributed local descriptors ([15], [16]). It is also
related to developments in reinforcement learning focusing on
the learning of sensorimotor predictors ([17], [18]) and on the
generation of meta-states by cutting connections in a graph
of transitions ([19], [20]). Note however that our goal lies
beyond prediction, which is assumed to be a driving force, to
focus on the sensorimotor structures that it can capture. The
main objective of this paper is thus to identify which structure
does correspond to the perceptive experience of ”objects” by
a naive agent. Moreover, a computational solution is proposed
to illustrate how it can be captured by a naive agent.

The paper is divided in four main sections. First, a for-
malization of the problem at hand is introduced. Second a
sensorimotor solution to the problem is proposed. Third, sim-
ulations of simple agent-environment systems are described to
illustrate the application of the method. Fourth, the limits and
future developments of the approach are discussed.

II. PROBLEM FORMULATION

The goal of this paper is to explain how the concept of
object can be fundamentally grounded in the sensorimotor
experience of a naive agent. First, a formal definition of naive
agent is introduced. Second, the concept of object is defined
by looking at the constraints it imposes on the sensorimotor
experience of the agent.

A. Naive agents

In order to limit as much as possible any bias that robot
designers usually introduce in the perceptive system of their
robot, the agents we consider have initially no a priori knowl-



edge about themselves or the world. They are granted with the
status of agent thanks to their:

• motors, controlled by motor variables that form a motor
configuration denoted m, and that enable actions in the
world,

• sensors, whose all elementary excitations constitute a
sensory state denoted s, and that capture information
about the environment,

• data processing medium that supports the processing of
sensorimotor data and potentially the following building
of cognitive abilities.

A parallel can here be drawn with the minimal cognitive
systems described by Beer [21].

In the following, we assume that motors are controlled in
position with no transient phase. Likewise, the sensory input is
generated without transient phase. Moreover, we also assume
that the mapping between the agent’s motor space and the
actual position of its sensors in space is homogeneous. This
way, the same motor variation generates the same sensors’
displacement, regardless of where it is performed in the motor
space. Note that those limitations could be overcome by
further developments of the method. For instance, a non-
homogeneous motor-position mapping could be considered by
initially learning rigid displacements of the agent [9].

Naive agents can’t be complete tabula rasa, as some in-
trinsic drives must be added to the system in order for it
to engage in an interaction with the world and to process
the data it has access to. Identifying such fundamental drives
is a fundamental goal of developmental robotics. They are
expected to allow the building of a progressively more and
more complex cognitive system. In this work, the focus is
put on the drive to process the data. The drive to interact
with the world is thus assumed to be minimalist: random
exploration. Note that more sophisticated policies could of
course be considered [22]. The choice of stochasticity however
allows us to focus on the other drive which is expressed in a
generic form: a drive to predict sensorimotor experiences. In
other words, the agent tries to control as much as possible its
Umwelt which sums up to the sensory and motor data it has
access to. A similar idea has been proposed in [12] as a drive to
reduce surprise. Regardless of the phrasing used, the outcome
of this drive is an internal modeling of the environment in
order to maximize predictability of sensorimotor experience.

B. A sensorimotor definition of objects

Defining what is an object for a naive agent and how it
can be perceived is not a trivial problem. The conventional
approach in robotics is to rely on models implemented on the
robot by its designer. However, when such a priori information
is lacking, a processing system has to be built in the agent
starting from raw sensorimotor data.

In the seminal paper [5] and latter developments, O’Regan
proposed to redefine perception as the mastering of sensori-
motor contingencies. In other words, perception arises when
the agent knows how the sensory input would be transformed
by its own actions. The philosophical discussion raised by

such a claim lies out of the scope of this paper. However,
it implies some interesting properties for a naive agent. First
and foremost, sensorimotor contingencies can be learned and
a naive agent can thus acquire the ability to perceive by
exploring its environment (or more precisely its sensorimotor
Umwelt) and discovering such contingencies. Second, senso-
rimotor contingencies are constrained by the physical reality
of the world the agent lives in. Its perceptive experience thus
derives from the way the agent can interact with the world, and
not from properties of the sensory or data processing systems
that support this interaction, as it is commonly assumed.
Finally, this innovative approach of perception fits naturally
with the fundamental drive introduced in II-A. By discovering
sensorimotor contingencies, the agent increases its ability to
predict its future experience.

Following such an approach, we propose to define an object
through the constraints it implies on the agent’s sensorimotor
interaction with the world. Let’s assume as a first approxima-
tion that:

• an object is an extended cluster of matter with a rigid
structure in the environment,

• an object can be moved inside its environment or encoun-
tered in different environments.

For a naive agent exploring its sensorimotor space, this implies
that it exists a subset of sensorimotor experiences whose struc-
ture is rigid and independent from the rest of the experiences.
In other words, by identifying an object in the environment, the
agent can accurately predict what sensory input it would get by
doing given actions in a subpart of its sensorimotor space. A
higher-level analogy would be to say that by ”seeing” the cap
of a bottle, an agent is able to predict it would ”see” its label
by moving its visual sensor in a certain direction. This is only
true thanks to the very physical nature of an object and the way
an agent can interact with it. Similarly to Poincaré saying that
the notion of space would not emerge without the presence of
rigid objects [23], we claim that the concept of object would
not emerge without them having a rigid structure and being
observed at different positions or in different environments.
This sensorimotor definition of an object can be formalized
mathematically as:

Ok =
{
{si}, {∆mij}

}
, with i, j ∈ [1, I] (1)

such that P (si,∆mij , sj) ≥ α,

where Ok is the internal encoding of object k, {si} is a set of
I sensory states si, {∆mij} is a set of I2 motor transitions
∆mij to go from si to sj , P (si,∆mij , sj) is the probability
of experiencing sj when starting from si and performing the
motor transition ∆mij , and α is a high probability threshold.
A graphical illustration of a set Ok is proposed in Fig. 1.

Note that the value α is purposely fuzzily defined. First,
the probabilistic formulation of the transition allows the defi-
nition of confidence in the set and its potential reinforcement.
Second, the value of α is system dependent and should
be set accordingly to the maximal certainty an agent can
achieve in predicting its sensorimotor experience. For instance,



Fig. 1. Schematic representation of a sensorimotor network Ok made of 5
sensory states and 10 highly probable motor transitions.

its value should be high for a noise-free agent-environment
system but low if the signal-noise ratio is poor. Beyond this
pragmatic consideration, the goal of Eq. 1 is to capture the
fact that interacting with an object implies regularities and
thus predictability in the way the agent can transition between
sensorimotor states. Given the fundamental drive for prediction
introduced in II-A, such a phenomenon is valuable for the
agent.

III. DISCOVERING OBJECTS

In order to illustrate the sensorimotor approach of objects
promoted in this paper, we propose a proof-of-concept algo-
rithm allowing a naive agent to discover highly probable sets
of sensorimotor transitions in the experience it gathers while
exploring the world.

Beforehand, let’s introduce the assumption on which the
method is based: changes in the world (object(s) moving or
environment changing) have a low probability compared to
changes in the agent’s motor configuration. In other words,
the agent has enough time to explore its sensorimotor space
before any new change occurs in the world 1. This hypothesis
seems realistic for an agent that explores its environment and
discovers objects, like a baby does while lying in his bed and
playing with toys. The rest of its environment can indeed be
considered static while the toys are moved or while he moves
himself. A contrario, we claim that it would be impossible
to discover the concept of object if the whole world was
constantly changing at a fast rate.

A. The algorithm

a) Initialization: The naive agent is placed in an environ-
ment where at least one object is present. It explores the scene,
formed by the environment and the object(s) it contains, by
changing its motor configuration m. Each motor configuration
mi explored this way is associated with a sensory state si. As
the predictability of sensorimotor transitions is the focus of
this work, this whole set of experiences is stored as triplets
{si,∆mij , sj} in the agent’s memory.

As such, the agent explored only a single scene which
can consequently be considered as a single object. Indeed it
forms a sensorimotor network where each transition is highly

1This constraint could be relaxed to ensure that the agent has time to at least
explore a significant subpart of its sensorimotor space between two changes
in the world.

predictable. In order to discover that it is not the case, it has
to experience changes in the scene.

b) Experiencing changes: After the scene has been com-
pletely explored, a change in the environment is generated. It
consists in either moving the object(s) to a different position,
or changing the environment that contains the object, or both.
Such a change is noticeable by the agent as it implies a
difference between new sensorimotor experiences and the
knowledge it stored in memory.

Similarly to what it did previously, it explores the scene
to assess the existence of new sensorimotor transitions and
potentially reinforce the ones it already stored. Every time
an incoming sensory input si corresponds to one it already
has in memory, it actively checks the relative transitions
{si,∆mij , sj} in its memory. It does so by performing the
motor command ∆mij and verifying if the new incoming
sensory state is sj . If it is the case, the probability of the
transition {si,∆mij , sj} is increased, while it is decreased
otherwise. In the following, the probability of each transition
P (si,∆mij , sj) is computed as the number of scenes in which
the transition was valid divided by the number of scenes
explored. The same overall process is reproduced for multiple
changes of the environment.

c) Identifying sensorimotor subsets: All the probabilities
can be stored in a 3D matrix D with entries si, sj ,∆mij where
si corresponds to a starting sensory state, sj to a final sensory
state, ∆mij to a motor command, and each value corresponds
to the probability of the given transition P (si,∆mij , sj). Note
that the knowledge about predictable sensorimotor transitions
is intrinsically contained in this matrix. It would thus be a sat-
isfying result for the agent. However, an additional processing
is performed for us to visualize the algorithm’s outcome.

B. Results visualization

The final step of the algorithm is to identify in the matrix
D the sets of sensory states interconnected with high probable
transitions and visualize them. Due to the way it is built, the
matrix D is such that only one probability P (si,∆mij , sj)
is non-zero for each pair of entries {si, sj}. In order to
simplify the analysis, the matrix D is thus reduced into the
2D matrix C by dropping the third dimension and keeping
only the non-zero probability for each entries {si, sj}. The
removed motor components are stored in a matrix T where
each row corresponds to a starting sensory input si, each
column corresponds to a final sensory state sj , and each value
corresponds to the relative motor transition ∆mij . Intuitively,
this simplification of matrix D into C means that we only need
to know that sensory states are linked with given probabilities
to determine interconnected sets of sensory inputs; the actual
motor commands values are irrelevant for this analysis.

A spectral clustering of the matrix C is performed to assess
the existence of highly probable sets of interconnected tran-
sitions. The method determines in a similarity matrix clusters
with high intra-connectivity and low extra-connectivity [24].
We thus suppose that a highly probable transition represents a
high similarity between the corresponding sensory states and



Fig. 2. Simulation 1. (a) Generation of a random scene and agent’s exploratory capacities. The object is colored only to simplify visualization. (b) Map of
positions for which the sensory input is salient. (c) Evolution of matrix C of probabilities of transitions during exploration of successive scenes. The matrix
C is initially built based on salient inputs found in the first scene explored. (d) Motor transition matrix. (e) Reordering of matrix C based on its spectral
clustering.

inversely. The spectral clustering projects the data in a space of
dimension k in which it can be clustered by any unsupervised
clustering method, commonly a simple k-means. The value k
is set accordingly to the number of expected clusters. Such a
hand-tuned parameter is not suitable for a fully autonomous
agent. However, spectral clustering is mainly used here for
visualization purpose. If it was a core component of the data
processing, an autonomous way to determine the dimension k
would be to search for the number of significant eigenvalues
of the similarity matrix C [25].

Finally, the rows and columns of the matrix C are reordered
by gathering the ones belonging to the same spectral cluster.
Any set of highly probable interconnected transitions should
thus appear as a full square of high values on the diagonal of
the reordered matrix C. Although such a reordering processing
is not required for the agent – for which the knowledge of
the transitions probabilities is sufficient – it allows an easier
visualization of the exploration’s outcome.

In the following, simulations are presented to illustrate the
application of the algorithm and how the presence of object(s)
in the environment can be captured by a naive agent.

IV. EXPERIMENTS

Two experiments are presented hereafter to test the algo-
rithm proposed in III-A. For each of them, the simulated agent-
environment system is presented, the exploratory process is
run and the results of the spectral clustering are discussed.

A. Simulation 1: 1D world

The first experiment proposes a simple system and scenario
in order to focus on the core idea of the algorithm.

a) The system: The world in which the agent and the
environment live is a one dimensional space made up of
150 successive elements. Each element can have physical
properties represented by a single value x in a finite set of 10
integers from 1 to 10. This could for instance correspond to
luminosity if the agent has a photo-sensible sensor, or different
textures in the case of a tactile sensor. Note that a discrete
description of the world is proposed here for the sake of
simplicity but a continuous one would also be compatible with
the approach.

In this world, an environment is defined as a state of the
world where each element’s value is randomly drawn. An
object made from 40 adjacent elements with fixed random
values is placed in the world, overlapping the ones from the
environment and forming a ”scene” that the agent can explore.
The agent’s sensor is made of three adjacent cells sensible to
the values of elements in the world and generates the sensory
state s = [x1, x2, x3]. The position of this sensor is set by the
agent’s motor. Its configuration is denoted m = m1, with m1

the single motor variable controlled by the agent. Given the
discrete nature of the world, the sensor is supposed to move
with discrete steps the length of one or multiple elements. An
illustration of the different components of the simulation is
presented in Fig. 2(a).

In order to limit the computational cost of the algorithm
application, we assume that some saliency of the sensory input
can be defined. This way, only salient sensory inputs need to be
taken into account during the processing, limiting this way the
size of the matrix C. The saliency definition could stem from
multiple considerations: low-level statistical properties of the
input, top-down influence on the input relevance, optimization
of some criterion on an evolutionary timescale. This discussion



Fig. 3. Resulting reordered matric C with a 5% probability for the
environment to change between two scenes.

however lies out of the scope of this paper. We thus simply
define an arbitrary criteria and remind the reader that its only
purpose is to limit the computational cost of the simulation.
A sensory state is considered salient and processed by the
agent if its convolution with the contrast filter [−0.5, 1,−0.5]
is greater than 0.4. A mapping of salient sensory inputs is
illustrated in Fig. 2(b) for a given scene.

b) The exploration: The exploratory scenario proposed
in III-A is performed. The exploration of the first scene leads
to the creation of an all-ones matrix C of size 27 × 27,
27 being the number of salient inputs discovered in the
scene. The matrix T representing the sensorimotor transitions
{si,∆mij , sj} is presented in Fig. 2(d).

The agent explores every new scene that it encounters after a
change has been generated by randomly changing the object’s
position in the world. The evolution of matrix C is presented in
Fig. 2(c). We can see that between scene 1 and 5, the matrix
C has already changed: some probabilities of transition are
high (red), as they have been experienced in all scenes so far,
while others are low (blue) as the agent has not been able to
experience them in each scene. After 350 changes, exploration
is stopped and the data collected by the agent is analyzed.

c) Results: The reordered matrix C obtained after spec-
tral clustering is presented in Fig. 2(e). Two clusters appear
clearly. The first one displays a maximal probability of all
intra-transitions and corresponds to the object. This last is
thus internally represented by a network of 7 sensory states
and the corresponding motor transitions between them. The
second cluster corresponds to the environment. Althought the
goal of the algorithm is to capture the existence of objects
in the world, the environment has been internally represented
as one due to its staticity. Indeed, it stayed unchanged during
the whole exploration. The probability of transition between
the sensory inputs initially discovered in the environment thus
remained significantly high. They are not as high as for the
object though, due to the fact that the object can randomly
hide some salient points in the background.

The same simulation has been run adding a probability of
5% for the environment to randomly change in every new
scene. The resulting clustering is presented in Fig. 3. The
internal representation of the object appears unchanged but
the cluster corresponding to the environment now contains low

probabilities. This is due to the low probability of experiencing
the same sensorimotor transitions in different environments.

Some additional remarks on the results are noteworthy. First,
note that the number of salient sensory inputs in the network
associated with an object is only an indirect characterization of
its size. Indeed, the larger the object, the greater the probability
that it contains salient inputs but one could easily imagine
large objects with only few salient inputs. Second, changing
the saliency criteria would modify the number (and nature)
of the sensory inputs stored in the agent’s memory. However,
the outcome of the algorithm would still be qualitatively the
same: a (different) cluster of sensory inputs would appear in
the transition matrix as an encoding of the object. Finally, the
hypothesis of complete exploration for each scene introduced
in section III could be loosened without affecting too signifi-
cantly the algorithm’s outcome. Each transition would have a
probability of not being explored in each scene, which means
that the maximum possible value in the matrix C would be
statistically lower. However, the network of transitions related
to the object would still have a greater probability than other
transitions to or in the background.

B. Simulation 2: 2D world with multiple objects

The algorithm proposed in III-A has been formulated in a
generic way. In this second simulation, we introduce a more
complex system to illustrate how it extends to more degrees
of freedom and multiple objects in the world.

a) The system: The world is similar to the one described
in simulation 1 but extended to a two dimensional space where
50×50 square elements are arranged in a grid. Three different
square objects are placed in the world. Each of them is made
up of 20× 20 elements with random values. This constitutes
a more realistic scenario as environments in the real world
are made up of multiple independent objects. The objects can
overlap in a random order that is drawn every time they move.
Note that objects could be of any shape, although squares have
been considered for simplicity.

The agent’s sensor is extended to a 3× 3 grid of cells that
generates the sensory input s = [x1, . . . , x9]. A new arbitrary
filter is introduced to determine the saliency of any sensory
state:  −1/16 −3/16 −1/16

−3/16 1 −3/16
−1/16 −3/16 −1/16

 ,
The sensors position is controlled by two motor variables that
form the motor configuration m = [m1,m2]. An illustration
of the different components of the simulation is presented in
Fig. 4(a,b). The overall system can be interpreted as a very
basic visual system where an eye would be saccading on a flat
visual scene.

b) The exploration: The exploratory scenario proposed
in III-A is performed identically to the first simulation. A
single constraint is added to ensure that the objects don’t
overlap in the initial scene in order to guarantee that they
are completely explored and that no relevant sensorimotor
transition would be missing for further reinforcement.



Fig. 4. Simulation 2. (a) Scene generation and agent’s exploratory capacities. Objects are color to simplify visualization. (b) Positions of salient sensory
inputs. (c) Evolution of the scene during simulation. (d) Evolution of matrix C during exploration of the successive scenes. (e) Reordering of matrix C based
on its spectral clustering.

A series of 350 scene changes are performed. Each change
is generated by randomly moving the objects and by changing
the environment with a probability of 5%. The evolution of
the scenes the agent can explore along with the evolution of
the matrix C are represented in Fig. 4(c,d).

c) Results: The reordered matrix C obtained after spec-
tral clustering is presented in Fig. 4(e). Three clusters of
highly probable intra-transitions appear clearly as internal
representations of the three objects. Contrarily to simulation
1, those probabilities are not necessarily maximal as objects
can eventually overlap and hide relevant sensory inputs in
some scenes. As in Fig. 3, a last cluster corresponds to the
environment but with too low intra-transitions probabilities to
appear clearly.

V. CONCLUSION

In this paper, we proposed a definition of the concept of
object in the sensorimotor framework of perception. Based
on the constraints it imposes on an agent’s interaction with
the world, an object can be described as a network of highly
probable sensorimotor transitions. Moreover, we explained
how such an internal construction can occur in a naive agent.
Assuming a fundamental drive for prediction, the concept of
object is the fortunate byproduct of the agent’s attempt to
control its sensorimotor experience.

In order to illustrate this new approach, we proposed a
proof-of-concept algorithm to discover networks of highly
probable sensorimotor transitions. The algorithm has been
tested on two simple simulated systems where the agent can
interact with objects in different contexts (positions of the
objects or environments that contain them). While interacting,
the agent tries to extract subsets of its sensorimotor experi-
ence where predictability is high. In the current algorithm’s
outcome, they can be visualized as clusters along the diagonal
of a probability matrix of transitions.

According to the sensorimotor contingencies theory, per-
ception doesn’t derive from the properties of the sensory

apparatus but from the properties of the agent’s interaction
with the world. In the current work, this means that the
”object” definition is relevant regardless of the actual hardware
properties of the agent. The use of different sensors and motor
would also lead to the building of highly probable networks of
transitions. Although certainly different, it would be a relevant
encoding of the corresponding objects from the agent’s internal
point of view. For instance, the definition of object proposed
in this paper is viable with either a visual sensor or a tactile
one. Moreover, although the discovery of objects naturally
leads to their dissociation from the background, the process
proposed in this work is notably different from traditional
object segmentation approaches. While the last rely on cutting
the object out of the scene [26], the sensorimotor approach
on the contrary identifies consistent relations in a subpart of
the scene. Fundamentally, this approach thus progressively
identify structures in the sensorimotor experience, which is
otherwise un-interpretable by a naive agent. This way, it aims
at building an intrinsically grounded semantics of the world.
The sensorimotor approach also differs from other methods
designed to learned sensorimotor predictors (for instance [18]).
Indeed, it goes beyond the estimation of predictors, whose
actual implementation could be done in very different ways, to
focus on identifying the structure underlying those predictions.
It is this structure that characterizes the agent’s ability to
interact with the world, and thus to perceive it.

Many future developments are considered to improve the
current algorithm. First and foremost, it should be extended
to allow the continuous acquisition of new sensorimotor
transitions in the agent’s memory as it explores the world.
This would remove the artificial asymmetry between the
exploration of the first scene, which is memorized, and the
consecutive scenes, which are only explored to reinforce this
memory. However, it would also raise new difficulties. In
particular, the same sensory state can be present multiple
times in a single object and/or in multiple environments and



objects. The agent should thus determine to which network it
belongs when processing the data. A solution to this problem
is to not look at single sensorimotor transitions but more
global sensorimotor contexts, which are sets of co-occuring
sensorimotor experiences. A re-formalization of the approach
in terms of dynamical systems would also be beneficial to
deal with this continuous growth of the memory and the
temporally extended nature of sensorimotor contexts [27].
Such a dynamical framework would also more easily manage
a stream of continuous sensory data, making the saliency
processing introduced in this paper unnecessary.

Second, the notion of sensory state has to be refined as
only a subpart of the sensory input s might be relevant to
characterize the object explored. It is the case for instance in
the second simulation (see IV-B) when the sensor is centered
on an object’s corner (only 4 over 9 sensory cells capture
properties of the objects). Variability of the sensory inputs
corresponding to one feature of the object (due to noise,
lighting condition...) also needs to be taken into account in the
definition of sensory state. This additional flexibility would be
the main step towards an application on a real robotic platform.

Finally, the sensorimotor network, which is already trans-
lation invariant, should be made rotation invariant. The way
to solve this problem is to have the agent discover the set
of displacements (translations and rotations) it can perform
in space, as proposed in [8], [9]. This mastering can lead
the agent to discover that the sensorimotor network defining
an object is invariant to those displacements. This potentially
includes displacements of objects in 3D with the additional
constraint that some subparts of the networks corresponding to
non-visible faces of the objects are not necessarily accessible
to the agent. Such a bridge between the problems of space
and object perception would also emphasize their intertwined
nature and shed a new light on the way a naive agent can
acquire the ability to perceive its environment.
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