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ABSTRACT2

Enabling users to teach their robots new tasks at home is a major challenge for research in3
personal robotics. This work presents a user study in which participants were asked to teach the4
robot Pepper a game of skill. The robot was equipped with a state-of-the-art skill learning method,5
based on dynamic movement primitives (DMPs). The only feedback participants could give was a6
discrete rating after each of Pepper’s movement executions (“very good”, “good”, “average”, “not7
so good”, “not good at all”). We compare the learning performance of the robot when applying8
user-provided feedback with a version of the learning where an objectively determined cost via9
hand-coded cost function and external tracking system is applied. Our findings suggest that10
a) an intuitive graphical user interface for providing discrete feedback can be used for robot11
learning of complex movement skills when using DMP-based optimization, making the tedious12
definition of a cost function obsolete; and b) un-experienced users with no knowledge about the13
learning algorithm naturally tend to apply a working rating strategy, leading to similar learning14
performance as when using the objectively determined cost. We discuss insights about difficulties15
when learning from user provided feedback, and make suggestions how learning continuous16
movement skills from non-expert humans could be improved.17

Keywords: Programming by Demonstration, Imitation Learning, CMA-ES, Human-Robot Interaction, DMP, human factors, optimization,18
skill learning19

1 INTRODUCTION

Robots are currently making their entrance in our everyday lives. To be able to teach them novel tasks,20
learning mechanisms need to be intuitively usable by everyone. The approach of Programming by21
Demonstration (Billard et al., 2008) includes users to show their robot how a task is done (for example22
via kinesthetic teaching), and the robot will then reproduce the demonstrated movement. However, not all23
tasks can be easily demonstrated to a robot this way. For example some tasks are only solved with very24
precise movements which are difficult to successfully demonstrate for the user. Instead, it is often more25
feasible to let the robot self-improve from an imperfect demonstration. Most research on robot learning26
aims primarily at optimizing the final task performance of the robot, while disregarding the usability of27
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the system by non-expert users. In particular, Programming by Demonstration studies and, even more so28
the optimization, are primarily tested in laboratory environments and rarely evaluated with human users,29
let alone with non-experts. The typical workflow for creating an optimization system encompasses the30
definition of a suitable cost function, which the system can evaluate to improve its performance. Finding a31
cost function that will ensure the desired outcome of the robot learning is far from trivial. In fact, often it is32
difficult even for domain experts to define a cost function that does not lead to unexpected behaviors by the33
robot. To be usable by non-expert users, it is unrealistic to expect the user to design a cost function in order34
to teach their robot a new skill. To make things worse, many cost functions require an external sensory35
setup (in addition to the robot’s on-board sensors) to measure relevant features precisely enough for the36
computation of the cost function – again, something which is feasible in a laboratory environment, but not37
realistic for use at home by non-experts.38

The general research topic of this work is thus to investigate, whether it is possible to employ a state-39
of-the-art optimization system in a user-centered setup: one that is intuitively usable by non-experts, and40
could easily be operated outside the laboratory (for example, it does not require expensive or difficult to41
calibrate equipment). In particular, we concentrate on robot learning of complex movement skills with42
a human teacher. As a method, we chose optimization of Dynamic Movement Primitives (DMPs) (see43
Section 2) as a widely used method from the Programming by Demonstration literature.44

It is commonly assumed that the feedback humans provide is a noisy and unreliable reward signal (e.g.45
Daniel et al., 2015; Weng et al., 2013; Knox and Stone, 2012): it is assumed that humans do not provide an46
optimal teaching signal, and therefore additional care should be taken when using the human-provided47
signal in a robot learning system. In contrast, here we deliberately chose to use an unaltered optimization48
system, without any modifications to the learning algorithm for “dealing with” the human-provided teaching49
signal or specific adaptations towards the human. In doing so, we aim at demonstrating, as a baseline, the50
performance of an unaltered, state-of-the-art Programming by Demonstration setup trained using human51
feedback alone. The only modification in our system is to replace the sensory-based cost evaluation by52
an intuitive to use graphical user interface, allowing the user to provide a discrete-valued feedback to the53
robot after each movement execution.54

1.1 Related Work55

The field of Interactive Machine Learning (IML) aims to give the human an active role in the machine56
learning process (Fails and Olsen Jr, 2003). It is a rather vast field including the human in an interactive57
loop with the machine learner, ranging from web applications to dialog systems, but also robots: the58
learner shows its output (e.g. performance, predictions) and the human provides input (e.g. feedback,59
corrections, examples, demonstrations, ratings). In robotics, IML combines research on machine learning60
(Section 1.1.1) and human-robot interaction (Section 1.1.2).61

1.1.1 Machine Learning with Human Teachers62

Regarding machine learning research, there is a large body of literature on incorporating human-provided63
reward signals into reinforcement learning algorithms. The majority of approaches focuses on the case64
where the action space of the robot is discrete (e.g. Abbeel and Ng, 2004; Thomaz and Breazeal, 2008;65
Chernova and Veloso, 2009; Taylor et al., 2011; Cakmak et al., 2012; Griffith et al., 2013; Cederborg et al.,66
2015), which means that the robot already has to know the “steps” (or “basic actions”) required to solve67
a task in advance: Related work in this area includes the work of Thomaz et al., who investigated user68
input to a reinforcement learning agent that learns a sequential task in a virtual environment (Thomaz69
et al., 2006). They then altered the learning mechanism according to the results of their Human-Robot70
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Interaction (HRI) studies. Also Senft et al. recently presented a study with a virtual reinforcement learning71
agent learning sequential tasks with user rewards (Senft et al., 2017).72

Here, in contrast, we are interested in the case of a continuous action space, which would allow a73
human user to teach their robot entirely new actions (which could in principle then also be used as new74
“basic actions” in reinforcement learning methods as the ones just mentioned). There is some existing75
work on robot learning from user feedback where the robot’s action space is continuous. Knox and Stone76
proposed the “TAMER” framework, aimed at learning a model of the human-provided reward, explicitly77
taking effects such as time-delayed responses into account (Knox and Stone, 2009). TAMER has mostly78
been used for learning in the case of discrete state and action spaces (Knox and Stone, 2012; Knox et al.,79
2012a,b), but recently has also been applied to traditional reinforcement learning benchmark tasks involving80
continuous spaces (e.g. Vien and Ertel, 2012). Similarly, Daniel et al. use Gaussian process regression and81
Bayesian optimization in combination with relative entropy policy search to estimate a reward function82
from user-provided feedback. In contrast to these works, we do not estimate a reward function but directly83
treat the user responses as teaching signal to the learning algorithm, to evaluate if an unaltered optimization84
algorithm in conjunction with DMPs can operate on user-provided discrete scores, noisy or not.85

Instead of requesting a score or reward value directly from the user, it has been suggested to employ86
preference-based learning (Sadigh et al., 2017; Christiano et al., 2017): the user is repeatedly presented87
with two alternative performances by the robot or agent, and is asked to select one over the other. Sadigh88
et al. used such an approach to let users teach a simulated 2-dimensional autonomous car to drive in a89
way deemed reasonable by the user (Sadigh et al., 2017). Their system learned a reward function from90
the human provided reward. However, the function estimation relied on a set of predefined features to91
succeed in learning from relatively little data. Like designing a cost function, also the design of suitable92
feature representations for the cost function estimation in itself can be challenging, and certainly is for93
non-experts. Christiano et al. successively presented pairs of short video clips showing the performance94
of virtual agents (simulated robots in one task, and agents playing Atari games in another task) to human95
participants, who then selected the performance that they preferred (Christiano et al., 2017). Using this96
feedback alone, the virtual agents were able to learn complex behaviors. Christiano et al. also learn a model97
of the user-provided responses. Interestingly, they were able to reduce the total amount of time humans had98
to interact with the learning system (watch videos, provide feedback) to only about one hour. However,99
their work is based on deep reinforcement learning methodology and thus requires the agent to train in100
total for hundreds of hours, which poses a severe difficulty for application in real robots on the one hand in101
terms of time necessary for training, and on the other hand due to other factors such as physical wear down.102
In contrast, we present a system that does not rely on the definition of suitable feature representations, and103
can learn successful movement skills from non-expert users in as little as 20 minutes in total.104

1.1.2 Human-Robot Interaction with Machine Learners105

Developing machine learning algorithms, we cannot imagine or model in theory what everyday, non-106
expert users will do with the system. For example, studies in imitation learning or Programming by107
Demonstration have shown that people will show completely different movement trajectories depending on108
where the robot learner is looking at the time of demonstration Vollmer et al. (2014). Thus, if we develop109
systems without considering human factors and testing it in HRI studies with everyday people, then our110
systems in the end might not be usable at all. Here, we briefly review studies of human-robot-learning111
scenarios with real naive human users. Some related HRI studies test machine learning algorithms with112
humans users and examine how naive users naturally teach robots and how the robot’s behavior impacts113
human teaching strategies (see Vollmer and Schillingmann, 2017, for a review). In the area of concept114
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learning for example, Cakmak and Thomaz (2010) and Khan et al. (2011) studied how humans teach a115
novel concept to a robot. In a task with simple concept classes where the optimal teaching strategy is116
known, Cakmak and Thomaz (2010) found that human teachers’ strategies did not match the optimal117
strategy. In a follow-up study, they tried to manipulate the human teacher to employ the optimal teaching118
strategy. Khan et al. (2011) provided a theoretical account for the most common teaching strategy they119
observed by analyzing its impact on the machine learner.120

Natural human teaching behavior of movement skills is very complex, highly adaptive and multimodal.121
Previous HRI studies have investigated the naive demonstration of continuous robot movement skills,122
focusing on the usability of kinesthetic teaching Weiss et al. (2009), or not applying machine learning123
algorithms but studying the influence of designed robot behavior, for example incorporating findings from124
adult-infant interactions (Vollmer et al., 2014, 2009, 2010).125

Weiss et al. (2009) have shown that naive users are able to teach a robot new skills via kinesthetic teaching.126
Here, we do not focus on the demonstration part of the skill learning problem, but the users’ feedback127
replaces the cost function for task performance optimization.128

1.2 Contribution and Outline129

In this work, we investigate whether a completely unmodified version of a state-of-the-art skill learning130
algorithm can cope with naive, natural user feedback. We deliberately restricted our system to components131
of low complexity (one of the most standard movement representations in the robotics literature, a very132
simple optimization algorithm, a simplistic user interface), in order to create a baseline against which more133
advanced methods could be compared.134

We present a first study with non-expert participants who teach a full-size humanoid robot a complex135
movement skill. Importantly, the movement involves continuous motor commands and cannot be solved136
using a discrete set of actions.137

We use Dynamic Movement Primitives (DMPs), which are “the most widely used time-dependent policy138
representation in robotics (Ijspeert et al., 2003; Schaal et al., 2005)” (Deisenroth et al., 2013, p. 9) combined139
with Covariance Matrix Adaptation Evolution Strategy (CMA-ES, Hansen, 2006) for optimization. Stulp140
and Sigaud (2013) have shown that the backbone of CMA-ES, “(µW , λ)-ES – one of the most basic141
evolution strategies – is able to outperform state-of-the-art policy improvement algorithms such as PI2 and142
PoWER with policy representations typically considered in the robotics community.”143

The task to be learned is the ball-in-cup game as described by Kober and Peters (2009a). Usually, these144
state-of-the-art learning mechanisms are tested in the lab in simulation or with carefully designed cost145
functions and external tracking devices. Imagine robots in private households that should learn novel146
policies from their owners. In this case, the use of external tracking devices is not feasible, as it comes with147
many important requirements (e.g. completely stable setup and lighting conditions for color-based tracking148
with external cameras). We chose the ball-in-cup game for our experiment, because it has been studied149
in a number of previous works (Miyamoto et al., 1996; Arisumi et al., 2005; Kober and Peters, 2009b;150
Nemec et al., 2010, 2011; Nemec and Ude, 2011) and we can therefore assume that it is possible to solve151
the task using DMP-based optimization. Still, it is not at all trivial to achieve a successful optimization, but152
a carefully set up sensory system is required to track the ball and the cup during the movement, as well as a153
robustly implemented cost function (covering all contingencies, see Section 2.2). We therefore believe the154
task to be a suitable representative for the study of robot learning of complex movements from naive users,155
which would otherwise require substantial design effort by an expert.156
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Policy search algorithms with designed cost functions usually operate on absolute distances obtained via157
a dedicated sensory system. However, participants in our study are naive in the sense that they are not told158
a cost function and it is difficult for humans to provide absolute distances (i.e., the cost) as feedback to159
the robot. Therefore, we provided participants with a simple user interface with which they give discrete160
feedback for each robot movement on a scale from one to five.161

The central question we aim to answer is: can human users without technical expertise and without162
manual or specific instructions teach a robot equipped with a simple, standard learning algorithm a novel163
skill in their homes (i.e., without any external sensor system)? For the evaluation, we focus on system164
performance and the user’s teaching behavior. We report important difficulties of making learning in this165
setup work with an external camera setup (Section 2.2) and with human users (Section 4.1).166

2 MATERIAL AND METHODS

2.1 System167

2.1.1 Robot168

Pepper is a 1.2 m tall humanoid robot developed and sold by SoftBank Robotics. Pepper’s design is169
intended to make the interaction with human beings as natural and intuitive as possible. It is equipped170
with a tablet as input device. Pepper is running NAOqi OS. Pepper is currently welcoming, informing and171
amusing customers in more than 140 SoftBank Mobile stores in Japan and it is the first humanoid robot172
that can now be found in Japanese homes.173

In our study, Pepper used only its right arm to perform the movements. The left arm and the body were174
not moving. For the described studies, any collision avoidance of the robot has been disabled. Joint stiffness175
is set to 70%.176

2.1.2 Setup177

The setup is shown in Fig. 1. Two cameras recorded the movement at 30 Hz, one from above and another178
one from the side. This allowed for tracking of the ball and cup during the movements. All events, including179
touch events on the tablet of the robot were logged.180

2.1.3 Ball and cup181

The bilboquet (or ball and cup) game is a traditional children’s toy, consisting of a cup and a ball,182
which is attached to the cup with a string, and which the player tries to catch with the cup. Kober et183
al. have demonstrated that the bilboquet movement can be learned by a robot arm using DMP-based184
optimization (Kober and Peters, 2009a), and we have demonstrated that Pepper is capable of mastering the185
game1. In this study, the bilboquet toy was chosen such that the size of the cup and ball resulted in a level186
of difficulty suitable for our purposes (in terms of time needed to achieve a successful optimization) and187
feasibility regarding the trade-off between accuracy (i.e. stiffness value) and mitigating hardware failure188
(i.e. overheating). Usually, such a movement optimization provides a more positive user experience when189
learning progress can be recognized. Thus, the initialization and exploration parameters together should190
yield an optimization from movements somewhere rather far from the cup toward movements near the cup.191
With a small cup, if the optimization moves rather quickly to positions near the cup, the ’fine-tuning’ of192
the movement to robustly land the ball in the cup takes disproportionally long. This is partially due to the193

1 https://youtu.be/jkaRO8J_1XI
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Figure 1. Experimental setup from above. In the studies with optimization via the external camera setup
(Section 2.2), where the experimenter only returned the ball to its home position, the seat for the participant
remained empty.

variance introduced by hardware. Therefore, we chose the cup size to result in an agreeable user experience194
by minimizing the time spent on ”fine tuning” of the movement near the cup at the end of the optimization195
process on the one hand, and on the other hand by minimizing the teaching time until the skill has been196
successfully learned.197

2.1.4 Learning algorithm198

We implement the robot’s movement using dynamic movement primitives (DMPs) (Ijspeert et al., 2013).199
We define the DMP as coupled dynamical systems:200

1

τ
ÿt = αy(β(yg − yt)− ẏt) + vt(yg − y0) · hθ(xt) (1)

1

τ
v̇t = −αvvt(1−

vt
K

) (2)

The “transformation system”, defined in Equation 1, is essentially a simple linear spring-damper system,201
perturbed by a non-linear forcing term hθ. Without any perturbation, the transformation system produces a202
smooth movement from any position yt towards the goal position yg (both positions defined in the robot’s203
joint space). The forcing term hθ is a function approximator, parametrized by the vector θ. It takes as input204
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a linear system xt, which starts with value 0 and transitions to 1 with constant velocity (see Stulp, 2014).205
The introduction of the forcing term allows us to model any arbitrarily shaped movement with a DMP.206

As suggested by Kulvicius et al. (2012), a “gating system” (defined in Equation 2) is used to ensure207
that the contribution of the forcing term hθ to the movement disappears after convergence. It is modeled208
after a sigmoid function, with starting state 1 and attractor state 0, where the slope and inflection point209
of the sigmoid function are determined by the parameters αv and K (for details, see Stulp, 2014). This210
way, stable convergence of the system can be guaranteed even for strong perturbations, as we know that the211
transformation system without any perturbation by the forcing term is stable, and the multiplication of the212
forcing term with the gating variable vt blends out the perturbation once the gating system has converged.213

For learning the ball-in-a-cup skill on Pepper, we adopt Stulp and Sigaud’s method of optimizing the214
parameter vector θ using simple black-box optimization (Stulp, 2014). More specifically, we use the215
Covariance Matrix Adaptation Evolution Strategy (CMA-ES, Hansen, 2006) for optimization, and locally216
weighted regression (Atkeson et al., 1997) for the function approximator hθ. The parameter space is217
150 dimensional as we use 5 degrees-of-freedom (DoF) in the robot arm and 30 local models per DoF.218
Following the Programming by Demonstration paradigm, we initialize the local models via kinesthetic219
teaching, thus first recording a trajectory, and subsequently determining model parameters via regression220
on the trajectory data points. After this initialization, we keep all but one parameter of each local model221
fixed: in the CMA-ES-based optimization, we only optimize the offset of the local models, which proves to222
allow for a change in the shape of the trajectory that is sufficient for learning.223

CMA-ES functions similarly to a gradient descent. After the cost has been obtained via the defined224
objective function for each roll-out in a batch, in each update step, a new mean value for the distribution225
is computed by ranking the samples according to their cost and using reward-weighted averaging. New226
roll-outs are sampled according to a multivariate normal distribution in Rn with here, n = 150. There are227
several open parameters which we manually optimized. We aimed at allowing a convergence to a successful228
movement within a reasonable amount of time. The parameters include the initial trajectory given to the229
system as a starting point, the number of basis functions the DMP uses to represent the movement, the230
initial covariance for exploration and the decay factor by which the covariance is multiplied after each231
update, the batch size as the number of samples (i.e. roll-outs) before each update, the stiffness of the232
joints of the robot, the number of batches (i.e. updates) for one session in the described studies. The233
initial trajectory was recorded via kinesthetic teaching to the robot. We chose a trajectory with too much234
momentum, such that the ball traveled over the cup. All parameters and their values are listed in Table 1.

Table 1. Overview of the open parameters of the system which influence learning.

Parameter Value
Initialization Same for all studies.

Number of basis functions 30
Covariance 80
Decay rate 0.8
Batch size 10
Stiffness 70 %

Number of batches 8

235
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Figure 2. Detection of ball and cup at the respective frame of interest in side and top view.

2.2 Optimization – External Camera Setup236

In order to optimize the movement with external cameras and to create a base-line corresponding to a237
state-of-the-art skill learning system, a carefully designed cost function is defined that determines the cost238
as the distance between the ball and the cup at height of the cup when the ball is traveling downward,239
similar as described in Kober and Peters (2009a). As with any sensory system designed for an automated240
measurement of a cost or error, significant care has to be taken to ensure robust and accurate performance,241
as already a slightly unreliable sensory system can prohibit the skill learning. In this case, particular care242
had to be taken for example in choosing camera models with high-enough frame rates, to ensure that the243
fast traveling ball could be accurately tracked in the camera image. During a roll-out, the ball typically (this244
depends on the chosen initialization, here, it will) passes the height of the cup and then descends again.245
From a webcam recording the side of the movement, we determine the exact frame when the descending246
ball passes the vertical position of the cup. In the corresponding frame from the top view camera at this247
moment, we measure the distance between the center of the ball and the center of the cup in pixels (see Fig.248
2).249

We showed a cyan screen on the robot’s tablet right before the movement began which could be detected250
automatically in the videos of both the side and top camera, to segment the video streams. The experimenter251
repositioned the ball in the home position after each roll-out.252

Apart from the usual issues for color-based tracking, as for instance overall lighting conditions, the above253
heuristic for cost determination needed several additional rules to cover exceptions (for instance, dealing254
with the ball being occluded in the side view when it lands in the cup or passes behind the robot’s arm).255
More severely, in this particular task the ball occasionally hits the rim of the cup and bounces off. The256
camera setup in this case detects the frame in which the ball passes beside the cup after having bounced off257
the rim, and thus assigns a too high cost to the movement. Although we were aware of this, we refrained258
from taking further measures to also cover this particularity of the task, as we found that the camera-based259
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Figure 3. The rating GUI displayed on the robot’s tablet, showing a common 5-point Likert-scale, a button
to accept the chosen rating, and a button to repeat the last shown movement.

optimization would still succeed. In a version of the game with a smaller cup size however, this proves to260
be more problematic for the optimization and needs to be taken into account.261

For initial trajectories that do not reach the height of the cup, additional rules would need to be262
implemented for low momentum roll-outs.263

2.3 Optimization – Naive Users264

In the following, we describe the conducted HRI study with non-expert users, who are naive to the265
learning algorithm and have little to no experience with robots. It was approved by the local ethics266
committee and informed consent was obtained from all participants prior to the experiment.267

2.3.1 Participants268

Participants were recruited through flyers/adds around the campus of Bielefeld University, at children’s269
daycare centers, and gyms. Twenty-six persons took part in the experiment. Participants were age- and270
gender-balanced (14 f, 12 m, age: M = 39.32, SD = 15.14 with a range from 19 - 70 years).271

2.3.2 Experimental Setup272

The experiment took place in a laboratory at Bielefeld University. The participant was sitting in front273
of Pepper. The experimenter sat to the left of the participant (see Fig.1). As in the other condition, two274
cameras recorded the movement, one from above and another one from the side, such that a ground truth275
cost could be determined. However, the camera input was neither used for learning, nor was communicated276
to participants that and how the cost would be determined from the camera images.277

2.3.3 Course of the Experiment278

Each participant was first instructed (in German) by the experimenter. The instructions constitute a very279
important part of the described experiment because everything that is communicated to participants about280
the robot and how it learns might influence the participants’ expectations and, in turn, their actions (i.e.281
ratings). Therefore, the instructions are described in full detail. It included the following information: The282
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research conducted is about robot learning. The current study tests the learning of the robot Pepper and if283
humans are able to teach it a task, especially a game of skill called ball in cup. The goal of the game is that284
Pepper gets the ball into the cup with movement. During the task, Pepper will be blindfolded. The cup is in285
Pepper’s hand and in the home position the ball is hanging still from the cup. The participant was instructed286
that he/she could rate each movement via a rating GUI, which was displayed on the robot’s tablet (see287
Fig. 3). The experimenter showed and explained the GUI. The participant can enter up to 5 stars for a given288
roll-out (as in Fig. 1). The stars correspond to the ratings of (common 5-point Likert-scales) 1: not good at289
all, 2: not so good, 3: average, 4: good, 5: very good. A rating is confirmed via the green check mark button290
on the right. Another button, the replay button on the left, permitted the participant to see a movement291
again, if needed. When the rating was confirmed, it was transformed into a cost as cost = 6− rating to292
invert the scale, and was associated to the last shown movement for the CMA-ES minimization. A ready293
prompt screen was then shown to allow the repositioning of the ball still in the home position. After another294
button touch of confirmation on this screen, the robot directly showed the next roll-out.295

As stated above, the camera-setup remained the same also in this study, however, the videos were only296
saved and used afterwards to compute ground truth. In this study, the cameras were not part of cost297
computation or learning. Participants were also informed of the cameras recording the movements. We298
told them that we would use the recordings to later follow up on what exactly the robot did. We informed299
participants that each participant does a fixed number of ratings at the end of which the tablet will show300
that the study has ended. At this point, participants were encouraged to ask any potential questions they301
had and informed consent was obtained from all participants prior to the experiment.302

Neither did we tell participants any internals of the learning algorithm, nor did we mention any rating303
scheme. We also did not perform any movement to prevent priming them about correct task performance.304

Then, Pepper introduced itself with its autonomous life behavior (gestures during speech and using face305
detection to follow the participant with its gaze). Pepper said that it wanted to learn the game blindfoldedly306
but did not know yet how exactly it went. It further explained that in the following it would try multiple307
times and the participant had to help it by telling it how good each try was. After the experimenter had308
blindfolded Pepper, the robot showed the movement of the initialization (see Section 2.1.4).309

After rating the 82 trials (the initialization + 80 generated roll-outs + the final optimized movement),310
each participant filled out a questionnaire on the usability of the system, and the participant’s experience311
when teaching Pepper. A short interview was conducted that targeted participants’ teaching strategies and312
feedback meaning.313

3 EXPERIMENTAL RESULTS

3.1 System Performance314

The system performance in the two studies is shown in Fig. 4. To compare the system performance across315
the studies, we defined five different measures of success on the objective cost only:316

• Is the final mean a hit or a miss? (Final.hit)317

• The distance of the final mean in pixels (Final.dist)318

• The mean distance of all roll-outs in the final batch in pixels (Batch.dist)319

• The total number of hits (#hits)320

• The number of roll-outs until the first hit (First.hit)321
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(a) Ground truth for camera optimized sessions.
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(b) Ground truth for naive user optimized sessions.

Figure 4. Ground truth from cameras for the 80 roll-outs in a session. First and last movements (with blue
background) are initialization and final mean, respectively. Gray backgrounds indicate batches (8 in total).
The central mark of box plots is the median, the lower edge of a box is the 25th percentile and the upper
edge the 75th percentile, the whiskers extend to 1.5 times the interquartile range. Dots with underlying
crosses lye outside the whiskers and could be considered outliers. Successful movement executions can
clearly be distinguished from unsuccessful ones, as they lie in a “band” of distance costs between 0 and
around 15, corresponding to the ball lying inside the cup. The ball passing directly next to the cup resulted
in a computed cost larger than 20, resulting in the clear separation that can be seen.

Based on these success measures, we perform statistical tests with the aim to determine what is more322
successful in optimizing this task, the camera setup or the naive users.323

The tests did not reveal any significant differences in performance between the two. Descriptive statistics324
can be found in Table 2. We conducted a CHI-square test for the binary hit or miss variable of the final325
roll-out (Final.hit) which did not yield significant results, χ2(1, 41) = 1.5, p = 0.221. We conducted four326
independent samples t-tests for the rest of the measures. For the distance of the final mean (Final.dist),327
results are not significant, t(35.66) = −1.527, p = 0.136. For the mean distance in roll-outs of the final328
batch (Batch.dist), results are not significant, t(39) = −0.594, p = 0.556. For the total number of hits329
(#hits), results are not significant, t(39) = 0.66, p = 0.513. For the number of roll-outs until the first hit330
(First.hit), the analysis was not significant either, t(31) = −0.212, p = 0.834.331
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a.i

a.ii

b

c

Figure 5. System performance for all sessions in a success category. Each line corresponds to camera
obtained ground truth (i.e., automatically detected ball to cup distance) for one session. Dots mark hits.
Each plot corresponds to one success category: (a.i) successful early convergence; (a.ii) successful late
convergence; (b) premature convergence; and (c) unsuccessful convergence.
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Table 2. Descriptive Statistics

Measure Cam HRI
Final.hit 80% hits 61.5% hits

M SD M SD
Final.dist 14.39 11.21 21.89 20.15
Batch.dist 25.88 16.00 27.82 21.66

#hits 20.27 11.84 17.96 14.97
First.hit 27.15 17.01 28.55 19.41

a b c

Figure 6. Individual visualizations for all roll-outs in one prototypical session for (a) successful, (b)
premature, and (c) unsuccessful convergence. Colors show score given (darker shades correspond to higher
scores, brighter shades correspond to lower scores). Concentric circles show equidistant positions around
the cup, which is located in the center.

When looking at the HRI study only, we identify three main cases of learning performance: a) successful332
convergence, with sub-cases a.i) early convergence, N = 12 and a.ii) late convergence, N = 5; b)333
premature convergence, N = 6; and c) unsuccessful convergence, N = 3 (see Fig. 5). Also in the camera334
optimized sessions, two out of 15 sessions showed unsuccessful convergence, which hints at important335
difficulties in both setups.336

3.2 User Teaching Behavior337

To investigate the teaching behavior of the non-expert users, we are particularly interested in the strategies338
that are successful or unsuccessful for learning.339

3.2.1 Questionnaire and Interview340

We first report the questionnaire and interview answers relating to the strategies of the participants in our341
study. This will give us a general idea about their (self-reported) teaching behavior before we analyze the342
actual scores. The strategies participants report in questionnaires and interviews can be categorized into343
five approaches.344
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3.2.1.1 Distance from ball to cup345

The majority of participants (N = 15) reported to use scores to rate the distance from the ball to the cup.346
Interestingly, all of these participants are part of sessions we identified as (a) successful convergence. This347
suggests that this strategy leads to success.348

3.2.1.2 Momentum349

A few participants (N = 2) reported to rate the momentum of a movement. Of course at the beginning350
of the sessions, the momentum correlates with the distance of the ball and cup. A movement with less351
momentum moves the ball closer to the cup. One of the participants who reported this strategy successfully352
trained the robot, for the other participant, the exploration converged prematurely.353

3.2.1.3 Comparative ratings354

A few others (N = 4) reported to give ratings comparing each movement to the previous one: if the355
movement was better then before, the rating was better and vice versa. Interestingly, sessions of participants356
with this teaching strategy all fall into the premature convergence category (b) described in Subsection 3.1.357

3.2.1.4 Spontaneous ratings358

Two participants claimed to rate the movements spontaneously, without any clear strategy (N = 2). For359
one of the two participants, exploration converged late, but successfully (a) and for the other the session360
was unsuccessful (c).361

3.2.1.5 Individual strategies362

The remaining participants reported individual strategies (N = 3). For instance one participant in this363
category gave always the same score (one star) with the intention to let the robot know that it should try364
something completely different in order to change the movement completely. The other two strategies365
were not reported clearly. However, the described strategy as well as another in this category, were not366
successful (c). One of the participants used a strategy that lead to premature convergence (b).367

3.2.2 Correlation with Ground Truth368

Based on the self-reported user strategies, we expect the successful sessions to also reflect the ‘Distance369
from ball to cup’ strategy in the actual scores participants gave. We test this by calculating the correlation370
between the participant scores and the ground truth of the robot movements. In the HRI case in general,371
participants received an average correlation coefficient of M = 0.72, SD = 0.20. The strategy to rate372
according to the distance between the ball and the cup should yield a high correlation value and thus373
we expect successful sessions to obtain a higher correlation coefficient than sessions with premature374
convergence, which in turn receives a higher correlation coefficient than unsuccessful convergence (i.e.,375
success category a > b > c). Because of small sample sizes, we conduct a Kruskal-Wallis H test. There376
was a statistically significant difference in correlation coefficients between the three different success377
categories, χ2(2) = 8.751, p = 0.013 < 0.05. An inspection of the mean ranks for the groups suggest378
that the successful sessions (a) had the highest correlation (mean rank = 16.24,M = 0.75, SD = 0.20),379
with the unsuccessful group (c) the lowest (mean rank = 2.67,M = 0.58, SD = 0.29), and prematurely380
converged sessions in between (mean rank = 11.17,M = 0.045, SD = 0.25). Pairwise post hoc381
comparisons show a significant difference between the successful (a) and unsuccessful (c) sessions only382
(p = 0.014 < 0.05, significance value adjusted by Bonferroni correction for multiple tests). Thus the383
results confirm our hypothesis.384
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3.2.3 Score Data385

Prototypical plots for the three success strategies are shown in Fig. 6. They corroborate and illustrate the386
teaching strategies we found.387

Looking at individual plots of scores, we can draw a number of additional qualitative observations:388

3.2.3.1 Hits receive always 5 stars.389

We observe that a hit (i.e., the ball lands in the cup) for all participants always receives a rating of 5 stars.390
Though some participants reserve the 5 star rating for hits only, in general, also misses could receive a391
rating of 5.392

3.2.3.2 Rating on a global scale393

One strategy we observe is to give ratings on a global scale, resulting in scores similar to the ground truth,394
but discrete.395

3.2.3.3 Rating on a local scale396

Some people that rate according to the distance between ball and cup, take advantage of the full range of397
possible scores during the whole session and adjust their ratings according to the performance.398

3.2.3.4 Giving the same score multiple times399

Some participants gave the same score multiple times in one batch. This could be due to perceptual400
difficulties. Participants often complained during the study that all movements look the same. Also this401
behavior could be part of a specific strategy, for example a behavior emphasizing the incorrect nature of the402
current kind of movement in order to get the robot to change the behavior completely (increase exploration403
magnitude) or a strategy that focuses on something else than the distance.404

4 DISCUSSION

The results of this work can be summarized with two main findings.405

1. CMA-ES optimization with DMP representation works well with un-experienced, naive users, who are406
giving discrete feedback.407

2. The main strategy users naturally apply, namely to rate according to the distance between the ball408
and the cup, is most successful. Relational feedback users provide, which depicts a binary relation of409
preference in a pair of consecutive trials, in this setup leads to premature convergence.410

DMPs are an established method for open-loop state-less optimization of robot skills and have been411
utilized for robot learning of diverse tasks, such as for (constrained) reaching tasks (Guenter et al., 2007;412
Kormushev et al., 2010; Ude et al., 2010), the ball-in-the-cup game (Kober and Peters, 2009b), pick-and-413
place and pouring tasks (Pastor et al., 2009; Tamosiunaite et al., 2011), pancake flipping (Kormushev et al.,414
2010), planar biped walking (Schaal et al., 2003; Nakanishi et al., 2004), tennis swings to a fixed end-point415
(Ijspeert et al., 2002), T-ball batting or hitting a ball with a table tennis racket (Calinon et al., 2010; Kober416
et al., 2011; Peters and Schaal, 2006), pool strokes (Pastor et al., 2011), feeding a doll (Calinon et al.,417
2010), bi-manual manipulation of objects using chopsticks (Pastor et al., 2011), dart throwing (Kober et al.,418
2011), Tetherball (Daniel et al., 2012), and one-armed drumming (Ude et al., 2010).419
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While we so far only tested the learning in one task (the ball-in-the-cup game), our results suggest that420
optimization in all of these tasks, which usually entails the difficult design of cost function and sensory421
system, could be achieved with a simple, generic user interface even in home settings by non-expert422
users. Through their task knowledge, users are able to impart the goal of the task, which is not implicitly423
pre-programmed into the robot beforehand, without explicitly formulating or representing a cost function.424
Further studies involving other tasks will be needed to fully confirm this.425

The discrete feedback users provide, seems to work as well as the camera setup. Even without426
modifications, the system is able to solve the task which could attest to a) the robustness of this simple427
base-line system towards unreliable human feedback and b) the ability of humans to adapt to the specifics428
of an unfamiliar learning system.429

We would like to point out that the camera setup was only able to achieve the reported learning430
performance because of a) the hardware used (i.e. cameras with a specific frame rate) and b) because of the431
careful implementation of the cost function. As such, naive human teaching was not tested against a naive432
reward function but a highly tuned one. As outlined in Section 2.2, the design of a suitable cost function is433
rarely straight-forward, and in practice requires significant adjustments to achieve the necessary precision.434
We believe that with a few instructions to users, system performance in this case can even be improved,435
and failed sessions can be prevented. We could imagine the naive users to perform even better than a cost436
function in some cases. For instance, towards the end of the optimization, the ball frequently hits the rim of437
the cup, especially, when a smaller cup is used. Because the ball moves very fast, this event is difficult to438
track for a vision system even with a high frame rate as it often occurs between frames. Crucially, when the439
ball bounces off the rim, it often travels far away from the cup and is thus assigned a high cost value by the440
hand-coded cost function. In contrast, humans can easily perceive this particular event, especially because441
it is marked with a characteristic sound, and tend to rate it with a high score. Also if the robot performs442
similarly bad roll-outs for some time with the ball always at a similar distance from the cup and then for443
the next roll-out, the ball lands at the same distance, but on the other side of the cup, the user might give a444
high rating to indicate the correct direction, whereas the camera setup will measure the same distance.445

4.1 Usability of/ Difficulties with the current system446

The optimal teaching strategy is not known for the system in this task, but it seems that most naive users447
are able to successfully train the robot. However, we have observed some difficulties users had with the448
current system.449

The DMP representation does not seem to be necessarily intuitive for humans. During the optimization,450
it appears more difficult to get out of some regions of the parameter space than others. This is not apparent451
in the action space. Additionally, nine participants reported to have first given scores spontaneously and452
later developed a strategy, hinting at difficulties at the beginning of the sessions, because they did not453
have any idea how to judge the first movements as they did not know how much worse the movements454
could get and they did not know the magnitude of differences between movements. Apart from these initial455
difficulties, four participants reported to be inconsistent in their ratings at the beginning or to have started456
out with a rating too high. This means that there is a phase of familiarization with the system and enhanced457
performance can be expected for repeated teaching.458

Due to the nature of CMA-ES and the way new samples are drawn from a normal distribution in the459
parameter space, robot performances from one batch did not differ wildly but appeared rather similar.460
This was confusing to some participants, as they were expecting the robot to try out a range of different461
movements to achieve the task. In contrast, the CMA-ES optimization resulted in rather subtle changes462
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to the movement. As a result, some participants rated all movements from one batch with exactly the463
same score. This is of course critical for the CMA-ES optimization, as it gives absolutely no information464
about the gradient direction. This issue could also be mitigated through repeated teaching interactions and465
familiarity with the system.466

Furthermore, with the use of CMA-ES, there is no direct impact of the ratings. Participants expected the467
ratings to have a direct effect on the subsequent roll-out. This lead to an exploration behavior with some468
participants who tested the effect of a specific rating or a specific sequence of ratings on the following469
roll-out. The participants reacted with surprise to the fact that after a hit, the robot again performed470
unsuccessful movements. The mean of the distribution in the parameter space could actually be moved471
directly to a hit movement, if the user had the possibility to communicate this.472

The cases of premature convergence could also be prevented by, instead of CMA-ES, using an473
optimization algorithm with adaptive exploration, like PI2CMA (Stulp and Oudeyer, 2012). Furthermore,474
participants were in general content with the possibility to provide feedback to the robot using a discrete475
scale. However, several participants commented that they would have preferred to also be able to provide476
verbal feedback of some form (“try with more momentum”, “try more to the left”). This supports findings477
by Thomaz et al. (2006) that human teachers would like to provide “guidance” signals to the learner that,478
in contrast to only giving feedback on the previous action, give instructions for the subsequent action. How479
to incorporate such feedback in the learning is subject of future work.480

4.2 Outlook481

We considered a learning algorithm without any modification or adaptation towards the human. In the482
following, we suggest future alterations to the system that we hypothesize to be beneficial for either system483
performance or usability and which can be measured systematically against the base-line.484

• Giving users more instructions including information about batches in learning. We have begun to485
study expert teaching of this task which even outperforms camera-optimization.486

• Include a button for ending optimization with the first hit. The mean is set to the current roll-out and487
exploration is terminated.488

• Choosing an optimization algorithm with adaptive covariance estimation, to mitigate premature489
convergence.490

• Allowing users to do the optimization twice or perform a test-run in order to alleviate skewed ratings491
due to wrong user expectations towards the robot.492

• Studying the effect of preference-based learning on system performance and usability.493
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