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Abstract— Enabling users to teach their robots new tasks at
home is a major challenge for research in personal robotics.
This work presents a user study in which participants were
asked to teach the robot Pepper a game of skill. The robot
was equipped with a state-of-the-art skill learning method,
based on dynamic movement primitives. The only feedback
participants could give was a discrete rating after each of Pep-
per’s movement executions (“very good”, “good”, “average”,
“not so good”, “not good at all”). We compare the learning
performance of the robot when using user-provided feedback
with a version of the learning where an objectively determined
cost function is used. Our results show that a) it is possible to
optimize a complex skill with such simple discrete feedback,
and b) un-experienced users with no knowledge about the
learning algorithm naturally tend to apply a working rating
strategy, leading to similar learning performance as when using
the objectively determined cost. We provide insights about
difficulties when learning from user provided feedback, and
make suggestions how the learning could be improved.

I. INTRODUCTION

Robots are currently making their entrance in our everyday
lives. To be able to teach them everyday tasks, learning
mechanisms need to be intuitively usable by everyone. The
general aim of this work is to understand if state-of-the-art
learning algorithms are compatible with human non-expert
users’ teaching behavior. The field of Interactive Machine
Learning (IML) aims to give the human an active role in the
machine learning process. It is a rather vast field including
the human in an interactive loop with the machine learner:
the learner shows its output (e.g. performance, predictions)
and the human provides input (e.g. feedback, corrections,
examples, demonstrations, ratings). In robotics, it combines
research on machine learning and human-robot interaction.
Though there exists related work in other areas, for example
on concept learning [1], [2], this work particularly concen-
trates on policy learning with a human teacher: allowing the
user to teach their robot a new task.

IML in robotics has mainly been applied to virtual agents.
Work that has been done with physical robots has so far
only investigated scenarios involving learning of discrete
sets of actions. Furthermore, in typical HRI studies with
complex state-of-the-art learning systems, evaluation with the

*A.-L. V. was supported by the Cluster of Excellence Cognitive Inter-
action Technology ’CITEC’ (EXC 277) at Bielefeld University, which is
funded by the German Research Foundation (DFG).

1Anna-Lisa Vollmer is with Faculty of Technology, Cognitive Inter-
action Technology Center of Excellence, Bielefeld University, Germany
avollmer@techfak.uni-bielefeld.de

2Nikolas J. Hemion is with SoftBank Robotics Europe, Paris, France
nhemion@softbankrobotics.com

Fig. 1: Experimental setup from above. In the studies with
optimization via the external camera setup (Section II-B),
where the experimenter only returned the ball to its home
position, the seat for the participant remained empty.

human in the loop is often done by the system developers
themselves.

Related work in this area includes the work of Thomaz and
colleagues, who investigated user input to a reinforcement
learning agent that learns a sequential task in a virtual
environment [3]. They then altered the learning mechanism
according to the results of their Human-Robot Interaction
(HRI) studies. Also Senft et al. recently presented a study
with a virtual reinforcement learning agent learning se-
quential tasks with user rewards [4]. Knox and colleagues
developed a framework where an agent’s policy is shaped by
human reinforcement signals, the ‘Training an Agent Manu-
ally via Evaluative Reinforcement’ (TAMER) framework [5].
TAMER is based on Q-learning and builds a model of the
human reward. It is mostly used for learning of discrete tasks,
but has also been applied to simulations of rather simple
continuous tasks [6]. In TAMER the learner is additionally
given environmental rewards. Very recently, Christiano et
al. have also focused on teaching reinforcement learning
agents novel behaviors [7]. They successively presented pairs
of short video clips showing the performance of virtual
agents (simulated robots in one task, and agents playing
Atari games in another task) to human participants, who
then selected the performance that they preferred. Using this
feedback alone, the virtual agents were able to learn inter-
esting behaviors, without relying on environmental rewards,
as opposed to TAMER. However, their work is based on



deep reinforcement learning methodology and thus requires
the agent to train for hundreds of hours, which poses a
severe difficulty for application in real robots, on the one
hand in terms of time necessary for training, and on the
other hand due to other factors such as physical wear down.
Interestingly, they were able to reduce the amount of human
feedback necessary to only about one hour. In contrast to
Christiano et al., here, we perform experiments with a real
physical robot and successful movements can be learned in
about 30 minutes.

In this work, we present a first study with naive non-expert
participants who teach a full-size humanoid robot equipped
with a completely unadjusted state-of-the-art learning mech-
anism a complex movement skill. Importantly, the movement
involves continuous motor commands and cannot be solved
using a discrete set of actions.

We use Dynamic Movement Primitives (DMPs), which are
“the most widely used time-dependent policy representation
in robotics [8], [9].” ([10], p.9), combined with Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) for opti-
mization. The task to be learned is the ball-in-cup game as
described by Kober et al. [11]. Usually, these state-of-the-art
learning mechanisms are tested in the lab in simulation or
with carefully designed cost functions and external tracking
devices. Imagine robots in private households that should
learn novel policies from their owners. In this case, the use
of external tracking devices is not feasible, as it comes with
many important requirements (e.g. completely stable setup
and lighting conditions for color-based tracking with external
cameras).

Absolute distances obtained via the objective function are
so far the only cost with which policy search has been
successfully tested. However, it is difficult for humans to
give absolute distances (i.e., the cost) as feedback to the
robot. Therefore, we let participants in our study give discrete
feedback on a scale from one to five.

The central question we aim to answer is: Can we use
simple CMA-ES based algorithms to train movement skills
with unexperienced users providing discrete feedback?

We will also identify important difficulties of making
learning in this setup work with an external camera setup
and with human users.

For the evaluation, we focus on system performance and
the user’s teaching behavior.

II. METHOD

A. System

1) Robot: Pepper is a 1.2 m tall humanoid robot de-
veloped and sold by SoftBank Robotics. Pepper’s design
is intended to make the interaction with human beings as
natural and intuitive as possible. It is equipped with a tablet
as input device. Pepper is running NAOqi OS. Pepper is
currently welcoming, informing and amusing customers in
more than 140 SoftBank Mobile stores in Japan and it is
the first humanoid robot that can now be found in Japanese
homes.

Pepper used only its right arm to perform the movements.
The left arm and the body were not moving. For the
described studies, any collision avoidance of the robot has
been disabled. Joint stiffness is set to 70%.

2) Setup: The setup is shown in Fig. 1. Two cameras
recorded the movement at 30 Hz, one from above and another
one from the side. This allowed for tracking of the ball and
cup during the movements. All events, including touch events
on the tablet of the robot were logged.

3) Ball and cup: The bilboquet (or ball and cup) game
is a traditional children’s toy, consisting of a cup and a
ball, which is attached to the cup with a string, and which
the player tries to catch with the cup. Kober et al. have
demonstrated that the bilboquet movement can be learned
by a robot arm using DMP-based optimization [11], and
we have demonstrated that Pepper is capable of mastering
the game1. In this study, the bilboquet toy was chosen
such that the size of the cup and ball resulted in a level
of difficulty suitable for our purposes (in terms of time
needed to achieve a successful optimization) and feasibility
regarding the trade-off between accuracy (i.e. stiffness value)
and mitigating hardware failure (i.e. overheating). Usually,
such a movement optimization provides a more positive user
experience when learning progress can be recognized. Thus,
the initialization and exploration parameters together should
yield an optimization from movements somewhere rather
far from the cup toward movements near the cup. With
a small cup, if the optimization moves rather quickly to
positions near the cup, the ’fine-tuning’ of the movement
to robustly land the ball in the cup takes disproportionally
long. This is partially due to the variance introduced by
hardware. Therefore, we chose the cup size to result in a
agreeable user experience by minimizing the time spent on
”fine tuning” of the movement near the cup at the end of
the optimization process on the one hand, and on the other
hand by minimizing the teaching time until the skill has been
successfully learned.

4) Learning algorithm: For learning the ball-in-a-cup
skill on Pepper, we adopt Stulp and Sigaud’s method [12]
of optimizing a dynamic movement primitive representa-
tion [13] using simple black-box optimization [14]. More
specifically, we use Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) for optimization. The parameter space
is 150 dimensional as we use 5 degrees-of-freedom (DoF)
in the robot arm and 30 DMP parameters. The DMP is
parameterized by a locally weighted regression to represent
the forcing term [12] using 30 local models for each DoF. For
each local model, we only optimize a single parameter, which
is the offset of the local model. CMA-ES functions similarly
to a gradient descent. After the cost has been obtained via
the defined objective function for each roll-out in a batch, in
each update step, a new mean value for the distribution is
computed by ranking the samples according to their cost and
using reward-weighted averaging. New roll-outs are sampled
according to a multivariate normal distribution in Rn with

1https://youtu.be/jkaRO8J_1XI
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Fig. 2: Detection of ball and cup at the respective frame of
interest in side and top view.

here, n = 150. There are several open parameters which we
manually optimized. We aimed at allowing a convergence
to a successful movement within a reasonable amount of
time. The parameters include the initial trajectory given to the
system as a starting point, the number of basis functions the
DMP uses to represent the movement, the initial covariance
for exploration and the decay factor by which the covariance
is multiplied after each update, the batch size as the number
of samples (i.e. roll-outs) before each update, the stiffness of
the joints of the robot, the number of batches (i.e. updates)
for one session in the described studies. The initial trajectory
was recorded via kinesthetic teaching to the robot. We chose
a trajectory with too much momentum, such that the ball
traveled over the cup. All parameters and their values are
listed in Table I.

TABLE I: Overview of the open parameters of the system
which influence learning.

Parameter Value
Initialization Same for all studies.

Number of basis functions 30
Covariance 80
Decay rate 0.8
Batch size 10
Stiffness 70 %

Number of batches 8

B. OPTIMIZATION – EXTERNAL CAMERA SETUP

In order to optimize the movement with external cameras,
a cost function is defined that determines the cost as the
distance between the ball and the cup at height of the cup
when the ball is traveling downward, similar as described in
[11]. During a roll-out, the ball typically (this depends on
the chosen initialization, here, it will) passes the height of
the cup and then descends again. From a webcam recording
the side of the movement, we determine the exact frame
when the descending ball passes the vertical position of the
cup. In the corresponding frame from the top view camera
at this moment, we measure the distance between the center
of the ball and the center of the cup in pixels (see Fig. 2).

We showed a cyan screen right before the movement began
which could be detected automatically to segment the video
streams. The experimenter repositioned the ball in the home
position after each roll-out.

Apart from the usual issues for color-based tracking, as
for instance overall lighting conditions, the above simple
heuristic for cost determination needed several additional
rules to cover exceptions (for instance, dealing with the ball
being occluded in the side view when it lands in the cup
or passes behind the robot’s arm). More severely, in this
particular task the ball occasionally hits the rim of the cup
and bounces off. The camera setup in this case detects the
frame in which the ball passes beside the cup after having
bounced off the rim, and thus assigns a too high cost to the
movement. Although we were aware of this, we restrained
from taking further measures to also cover this particularity
of the task, as we found that the camera-based optimization
would still succeed. In a version of the game with a smaller
cup size however, this proves to be more problematic for the
optimization and needs to be taken into account.

For initial trajectories that do not reach the height of the
cup, additional rules would need to be implemented for low
momentum roll-outs.

C. OPTIMIZATION – NAIVE USERS

In the following, we describe the conducted HRI study
with non-expert users, who are naive to the learning algo-
rithm and have little to no experience with robots. It was
approved by the local ethics committee.

1) Participants: Participants were recruited through fly-
ers/adds around the campus of Bielefeld University, at chil-
dren’s daycare centers, and gyms. Twenty-six persons took
part in the experiment. Participants were age- and gender-
balanced (14 f, 12 m, age: M = 39.32, SD = 15.14 with a
range from 19 - 70 years).

2) Experimental Setup: The experiment took place in
a laboratory at Bielefeld University. The participant was
sitting in front of Pepper. The experimenter sat to the left of
the participant (see Fig.1). As in the other two conditions,
two cameras recorded the movement, one from above and
another one from the side, such that a ground truth cost
could be determined. However, the camera input was neither
used for learning, nor was it communicated to participants
how the cost would be determined from the camera images.
Informed consent was obtained from all participants prior to
the experiment.

3) Course of the experiment: Each participant was first
instructed (in German) by the experimenter. The instructions
constitute a very important part of the described experiment
because everything that is communicated to participants
about the robot and how it learns might influence the partic-
ipants’ expectations and, in turn, their actions (i.e. ratings).
Therefore, the instructions are described in full detail. It
included the following information: The research conducted
is about robot learning. The current study tests the learning
of the robot Pepper and if humans are able to teach it a
task, especially a game of skill called ball in cup. The goal
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(a) Ground truth for camera optimized sessions.
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(b) Ground truth for naive user optimized sessions.

Fig. 3: Ground truth from cameras for the 80 roll-outs in a session. First and last movements (with blue background) are
initialization and final mean, respectively. Gray backgrounds indicate batches (8 in total). The central mark of box plots is
the median, the lower edge of a box is the 25th percentile and the upper edge the 75th percentile, the whiskers extend to
1.5 times the interquartile range. Dots with underlying crosses lye outside the whiskers and could be considered outliers.
Successful movement executions can clearly be distinguished from unsuccessful ones, as they lie in a “band” of distance
costs between 0 and around 15, corresponding to the ball lying inside the cup. The ball passing directly next to the cup
resulted in a computed cost larger than 20, resulting in the clear separation that can be seen.

of the game is that Pepper gets the ball into the cup with
movement. During the task, Pepper will be blindfolded. The
cup is in Pepper’s hand and in the home position the ball is
hanging still from the cup. The participant was instructed
that he/she could rate each movement via a rating GUI,
which was displayed on the robot’s tablet. The experimenter
showed and explained the GUI. The participant can enter
up to 5 stars for a given roll-out (as in Fig. 1). The stars
correspond to the ratings of (common 5-point Likert-scales)
1: not good at all, 2: not so good, 3: average, 4: good, 5:
very good. A rating is confirmed via the green check mark
button on the right. Another button, the replay button on the
left, permitted the participant to see a movement again, if
needed. When the rating was confirmed, it was transformed
into a cost as cost = 6 − rating to invert the scale, and
was associated to the last shown movement for the CMA-
ES minimization. A ready prompt screen was then shown to
allow the repositioning of the ball still in the home position.
After another button touch of confirmation on this screen,
the robot directly showed the next roll-out.

The camera-setup remained the same also in this study,
however, the videos were only saved and used afterwards to

compute ground truth. In this study, the cameras were not
part of cost computation or learning. Participants were also
informed of the cameras recording the movements and that
each participant does a fixed number of ratings at the end
of which the tablet will show that the study has ended. At
this point, participants were encouraged to ask any potential
questions they had.

Neither did we tell participants any internals of the learn-
ing algorithm, nor did we mention any rating scheme. We
also did not perform any movement to prevent priming them
about correct task performance.

Then, Pepper introduced itself with its autonomous life
behavior (gestures during speech and using face detection
to follow the participant with its gaze). Pepper said that it
wanted to learn the game blindfoldedly but did not know yet
how exactly it went. It further explained that in the following
it would try multiple times and the participant had to help it
by telling it how good each try was. After the experimenter
had blindfolded Pepper, the robot showed the movement of
the initialization (see Section II-A.4).

After rating the 82 trials (the initialization + 80 generated
roll-outs + the final optimized movement), each participant
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(a) Success category a.i of successful early convergence.
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(b) Success category a.ii of successful late convergence.
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(c) Success category b of premature convergence.
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(d) Success category c of unsuccessful convergence.

Fig. 4: System performance for all sessions in a success category. Each line corresponds to camera obtained ground truth
(i.e., automatically detected ball to cup distance) for one session. Dots mark hits.

filled out a questionnaire on the usability of the system, and
the participant’s experience when teaching Pepper. A short
interview was conducted that targeted participants’ teaching
strategies and feedback meaning.

III. EXPERIMENTAL RESULTS

A. System Performance

The system performance in the two studies is shown in Fig.
3. To compare the system performance across the studies, we
defined five different measures of success on the objective
cost only:

• Is the final mean a hit or a miss? (Final.hit)
• The distance of the final mean in pixels (Final.dist)
• The mean distance of all roll-outs in the final batch in

pixels (Batch.dist)
• The total number of hits (#hits)
• The number of roll-outs until the first hit (First.hit)
Based on these success measures, we perform statistical

tests with the aim to determine what is more successful in
optimizing this task, the camera setup or the naive users.

The tests did not reveal any significant differences in
performance between the two. Descriptive statistics can be
found in Table II. We conducted a CHI-square test for the
binary hit or miss variable of the final roll-out (Final.hit)
which did not yield significant results, χ2(1, 41) = 1.5, p =
0.221. We conducted four independent samples t-tests for
the rest of the measures. For the distance of the final
mean (Final.dist), results are not significant, t(35.66) =
−1.527, p = 0.136. For the mean distance in roll-outs of the
final batch (Batch.dist), results are not significant, t(39) =

−0.594, p = 0.556. For the total number of hits (#hits),
results are not significant, t(39) = 0.66, p = 0.513. For the
number of roll-outs until the first hit (First.hit), the analysis
was not significant either, t(31) = −0.212, p = 0.834.

TABLE II: Descriptive Statistics

Measure Cam HRI
Final.hit 80% hits 61.5% hits

M = SD = M = SD =
Final.dist 14.39 11.21 21.89 20.15
Batch.dist 25.88 16.00 27.82 21.66

#hits 20.27 11.84 17.96 14.97
First.hit 27.15 17.01 28.55 19.41

When looking at the HRI study only, we identify three
main cases of learning performance: a) successful conver-
gence, with sub-cases a.i) early convergence, N = 12 and
a.ii) late convergence, N = 5; b) premature convergence,
N = 6; and c) unsuccessful convergence, N = 3 (see Fig.
4). Also in the camera optimized sessions, two out of 15
sessions showed unsuccessful convergence, which hints at
important difficulties in both setups.

B. User Teaching Behavior

To investigate the teaching behavior of the non-expert
users, we are particularly interested in the strategies that are
successful or unsuccessful for learning.

1) Questionnaire and Interview: We first report the ques-
tionnaire and interview answers relating to the strategies of
the participants in our study. This will give us a general
idea about their (self-reported) teaching behavior before we
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Fig. 5: Individual visualizations for all roll-outs in one prototypical session for (a) successful, (b) premature, and (c)
unsuccessful convergence. Colors show score given (darker shades correspond to higher scores, brighter shades correspond
to lower scores). Concentric circles show equidistant positions around the cup, which is located in the center.

analyze the actual scores. The strategies participants report
in questionnaires and interviews can be categorized into five
approaches.

a) Distance from ball to cup: The majority of partici-
pants (N = 15) reported to use scores to rate the distance from
the ball to the cup. Interestingly, all of these participants are
part of sessions we identified as (a) successful convergence.
This suggests that this strategy leads to success.

b) Momentum: A few participants (N = 2) reported
to rate the momentum of a movement. Of course at the
beginning of the sessions, the momentum correlates with
the distance of the ball and cup. A movement with less
momentum moves the ball closer to the cup. One of the
participants who reported this strategy successfully trained
the robot, for the other participant, the exploration converged
prematurely.

c) Comparative ratings: A few others (N = 4) reported
to give ratings comparing each movement to the previous
one: if the movement was better then before, the rating was
better and vice versa. Interestingly, sessions of participants
with this teaching strategy all fall into the premature conver-
gence category (b) described in Subsection III-A.

d) Spontaneous ratings: Two participants claimed to
rate the movements spontaneously, without any clear strat-
egy (N = 2). For one of the two participants, exploration
converged late, but successfully (a) and for the other the
session was unsuccessful (c).

e) Individual strategies: The remaining participants
reported individual strategies (N = 3). For instance one
participant in this category gave always the same score (one
star) with the intention to let the robot know that it should
try something completely different in order to change the
movement completely. The other two strategies were not
reported clearly. However, the described strategy as well
as another in this category, were not successful (c). One

of the participants used a strategy that lead to premature
convergence (b).

2) Correlation with Ground Truth: Based on the self-
reported user strategies, we expect the successful sessions
to also reflect the ‘Distance from ball to cup’ strategy in the
actual scores participants gave. We test this by calculating
the correlation between the participant scores and the ground
truth of the robot movements. In the HRI case in general,
participants received an average correlation coefficient of
M = 0.72, SD = 0.20. The strategy to rate according to
the distance between the ball and the cup should yield a
high correlation value and thus we expect successful sessions
to obtain a higher correlation coefficient than sessions with
premature convergence, which in turn receives a higher
correlation coefficient than unsuccessful convergence (i.e.,
success category a > b > c). Because of small sample
sizes, we conduct a Kruskal-Wallis H test. There was a
statistically significant difference in correlation coefficients
between the three different success categories, χ2(2) =
8.751, p = 0.013 < 0.05. An inspection of the mean ranks
for the groups suggest that the successful sessions (a) had the
highest correlation (mean rank = 16.24,M = 0.75, SD =
0.20), with the unsuccessful group (c) the lowest (mean
rank = 2.67,M = 0.58, SD = 0.29), and prematurely
converged sessions in between (mean rank = 11.17,M =
0.045, SD = 0.25). Pairwise post hoc comparisons show a
significant difference between the successful (a) and unsuc-
cessful (c) sessions only (p = 0.014 < 0.05, significance
value adjusted by Bonferroni correction for multiple tests).
Thus the results confirm our hypothesis.

3) Score data: Prototypical plots for the three success
strategies are shown in Fig. 5. They corroborate and illustrate
the teaching strategies we found.

Looking at individual plots of scores, we can draw a
number of additional qualitative observations:



a) Hits receive always 5 stars.: We observe that a hit
(i.e., the ball lands in the cup) for all participants always
receives a rating of 5 stars. Though some participants reserve
the 5 star rating for hits only, in general, also misses could
receive a rating of 5.

b) Rating on a global scale: One strategy we observe
is to give ratings on a global scale, resulting in scores similar
to the ground truth, but discrete.

c) Rating on a local scale: Some people that rate ac-
cording to the distance between ball and cup, take advantage
of the full range of possible scores during the whole session
and adjust their ratings according to the performance.

d) Giving the same score multiple times: Some par-
ticipants gave the same score multiple times in one batch.
This could be due to perceptual difficulties. Participants often
complained during the study that all movements look the
same. Also this behavior could be part of a specific strategy,
for example a behavior emphasizing the incorrect nature of
the current kind of movement in order to get the robot
to change the behavior completely (increase exploration
magnitude) or a strategy that focuses on something else than
the distance.

IV. DISCUSSION
The contribution of this work can be summarized with two

main results.
1) CMA-ES optimization with DMP representation works

with un-experienced, naive users, who are giving dis-
crete feedback.

2) The main strategy users naturally apply, namely to rate
according to the distance between the ball and the cup,
is most successful. Relational feedback users provide,
which depicts a binary relation of preference in a pair
of consecutive trials, in this setup leads to premature
convergence.

The discrete feedback users provide, seems to work as
well as the camera setup. We believe that with a few
instructions to users, system performance in this case can
even be improved and failed sessions can be prevented. We
could imagine the naive users to perform even better than a
cost function in some cases. For instance, hitting the edge
of the cup, landing a hit by chance are easily perceived and
given the correct score, whereas an algorithmic computation
of the cost using a camera setup might fail to correctly track
this fast and complex movement. Also if the robot performs
similarly bad roll-outs for some time with the ball always at
a similar distance from the cup and then for the next roll-
out, the ball lands at the same distance, but on the other side
of the cup, the user might give a high rating to indicate the
correct direction, whereas the camera setup will measure the
same distance.

The optimal teaching strategy is not known for the system
in this task, but it seems that most naive users are able to suc-
cessfully train the robot. However, we have observed some
difficulties with the current system. The DMP representation
is unintuitive for humans. During the optimization, it seems
more difficult to get out of some regions of the parameter

space than others. This is not apparent in the action space.
Additionally, nine participants reported to have first given
scores spontaneously and later developed a strategy, hinting
at difficulties at the beginning of the session, because they
did not have any idea how to judge the first movements as
they did not know how much worse the movements could get
and they did not know the magnitude of differences between
movements. Apart from initial difficulties, four participants
reported to be inconsistent in their ratings at the beginning
or to have started out with a rating too high. This means that
there is a phase of familiarization with the system.

Due to the nature of CMA-ES and the way new samples
are drawn from a normal distribution in the parameter space,
robot performances from one batch did not differ wildly
but appeared rather similar. This was confusing to some
participants, as they were expecting the robot to try out a
range of different movements to achieve the task. In contrast,
the CMA-ES optimization resulted in rather subtle changes
to the movement. As a result, some participants rated all
movements from one batch with exactly the same score. This
is of course critical for the CMA-ES optimization, as it gives
absolutely no information about the gradient direction.

Furthermore, with the use of CMA-ES, there is no direct
impact of the ratings. Participants expected the ratings to
have a direct effect on the subsequent roll-out. This lead to
an exploration behavior with some participants who tested
the effect of a specific rating or a specific sequence of ratings
on the following roll-out. The participants reacted with
surprise to the fact that after a hit, the robot again performed
unsuccessful movements. The mean of the distribution in the
parameter space could actually be moved directly to a hit
movement, if the user had the possibility to communicate
this.

The cases of premature convergence could also be pre-
vented by instead of CMA-ES using an optimization algo-
rithm with adaptive exploration, like PI2CMA [15]. Further-
more, participants were in general content with the possibil-
ity to provide feedback to the robot using a discrete scale.
However, several participants commented that they would
have preferred to also be able to provide verbal feedback of
some form (“try with more momentum”, “try more to the
left”). How to incorporate such feedback in the learning is
subject of future work.
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